【STM32嵌入式系统设计与开发】——15PassiveBeep(无源蜂鸣器应用_GPIO输出状态实现)

这里写目录标题


STM32资料包:

百度网盘下载链接:链接:https://pan.baidu.com/s/1mWx9Asaipk-2z9HY17wYXQ?pwd=8888

提取码:8888


一、任务描述

二、任务实施

观察电路图:

TXD(底板) ------------------------> PA10

RXD(底板) ------------------------> PA9

P11 (底板) ------------------------> PA12

使用USB-AB型数据线,连接15核心板USB口,串口发送接收到的数据。

1、工程文件夹创建

步骤1:复制工程模板"1_Template"重命名为"12_PassiveBeep"。

步骤2:修改项目工程名,先删除projects文件夹内除了Template.uvprojx文件外的所有内容并修改为"PassiveBeep.uvprojx"。并删除output/obj和output/lst中的所有文件。

步骤3:运行"PassiveBeep.uvprojx"打开目标选项"Options for Target"中的"Output"输出文件,并修改可执行文件名称为"PWM"点击"OK"保存设置。最后点击"Rebuild"编译该工程生成Usart文件。

步骤4:复制2_LEDTest中的"1_LED"和文件复制到hardware中。

步骤5:在"bsplibrary"中新建"passivebeep"文件夹,并新建"passivebeep.c"和"passivebeep.h"文件。

步骤5:工程组文件中添加"led"和"passivebeep"文件夹内的所有文件。

步骤6:目标选项添加添加头文件路径。

2、函数编辑

(1)主函数编辑

通过初始化GPIO控制无源蜂鸣器的引脚,并在循环中播放预先定义的音乐,实现了简单的音乐播放功能

步骤1:端口初始化准备

c 复制代码
	//函数初始化,端口准备
	uint32_t temp=0;
	delay_init();            //启动滴答定时器
    usart1_init(9600);       //USART1初始化
	LED_Init();              //板载LED初始化
	ExpLEDInit();            //开发板LED初始化
    BEEP_Init();             //无源蜂鸣器初始化 

步骤2:实现一个简单的计时器,并在每秒打印一次计时信息。利用LED状态的改变来指示系统正在运行。

c 复制代码
while(1) 
  {
	play_music(); //播放音乐		 
  }

(2)USART1初始化函数(usart1_init())

配置了 PA9 为复用推挽输出,用于 USART1 的 TXD,并配置了 PA10 为浮空输入,用于 USART1 的 RXD。并配置了 USART1 的参数,包括波特率、数据位长度、停止位数、校验位、硬件流控制和工作模式。

c 复制代码
/*********************************************************************
 @Function  : USART1初始化
 @Parameter : bound : 波特率 
 @Return    : N/A
**********************************************************************/   	
void usart1_init(uint32_t bound)
{
    GPIO_InitTypeDef GPIO_InitStructure;             										          // 定义 GPIO 初始化结构体
    USART_InitTypeDef USART_InitStructure;            										          // 定义 USART 初始化结构体
    NVIC_InitTypeDef NVIC_InitStructure;              										          // 定义 NVIC 初始化结构体

    /* 时钟使能:启用 USART1 和 GPIOA 的时钟 */
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);

    /* 引脚复用配置 */  
    // 配置 PA9 为复用推挽输出,用于 USART1 的 TXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;   		                             // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;                                // 设置 GPIO 速度
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; 								 // 设置 GPIO 模式为复用推挽
    GPIO_Init(GPIOA, &GPIO_InitStructure);          							     // 初始化 GPIO

    // 配置 PA10 为浮空输入,用于 USART1 的 RXD
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;                                      // 设置 GPIO 端口
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;                           // 设置 GPIO 模式为浮空输入
    GPIO_Init(GPIOA, &GPIO_InitStructure);                                          // 初始化 GPIO

    /* NVIC 中断配置 */ 
    NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;                               // 设置中断通道为 USART1
    NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;                       // 设置抢占优先级为3
    NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;                              // 设置子优先级为3
    NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                 // 使能中断通道
    NVIC_Init(&NVIC_InitStructure);                                                 // 初始化 NVIC

    /* USART1 配置 */ 
    USART_InitStructure.USART_BaudRate = bound;                                     // 设置波特率
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;                     // 设置数据位长度为8位
    USART_InitStructure.USART_StopBits = USART_StopBits_1;                          // 设置停止位为1位
    USART_InitStructure.USART_Parity = USART_Parity_No;                             // 设置校验位为无校验
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; // 设置硬件流控制为无
    USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                 // 设置工作模式为接收和发送
    USART_Init(USART1, &USART_InitStructure);                                       // 初始化 USART1

		/*中断配置*/
		USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);                                //开接受中断 
		USART_ITConfig(USART1,USART_IT_IDLE,ENABLE);                                //开空闲中断
		USART_ITConfig(USART1,USART_IT_TXE,ENABLE);                                 //开发送中断	
		USART_Cmd(USART1, ENABLE);                                                  //启用USART1
		USART_DataTypeStr.Usart_Tc_State = SET;	                                    //置位发送允许标志	      
}

(3)USART数据发送函数( USART1_Send_Data())

初始化PD14端口,并为推挽输出。

c 复制代码
/*********************************************************************
 @Function  : USART数据发送函数
 @Parameter : Data 	 :要发送的数据缓存.
							Lenth  :发送长度
 @Return    : 发送状态   1 :失败   0 :成功
**********************************************************************/
char USART1_Send_Data(char* Data,uint8_t Lenth) 
{
	uint8_t uNum = 0;
	if(USART_DataTypeStr.Usart_Tc_State == 1)                       //判断发送标志位是否置1
	{
		USART_DataTypeStr.Usart_Tc_State = 0;                       //将发送标志位清零,表示数据已经成功放入缓存,等待发送
		USART_DataTypeStr.Usart_Tx_Len = Lenth;                     //获取需要发送的数据的长度       
	  for(uNum = 0;uNum < USART_DataTypeStr.Usart_Tx_Len;uNum ++)   //将需要发送的数据放入发送缓存
	  {
		  USART_DataTypeStr.Usart_Tx_Buffer[uNum] = Data[uNum];
	  }
    USART_ITConfig(USART1,USART_IT_TXE,ENABLE);			            //数据放入缓存后打开发送中断,数据自动发送
	}
	return USART_DataTypeStr.Usart_Tc_State;                        //返回放数据的状态值,为1表示发送失败,为0表示发送成功了
}

(4)USART数据发送函数( USART1_IRQHandler())

c 复制代码
/*********************************************************************
 @Function  : USART1中断服务函数
 @Parameter : N/A 
 @Return    : N/A
**********************************************************************/
void USART1_IRQHandler(void)                
{
	 uint8_t Clear = Clear;                                                                           // 定义清除标志的变量,并初始化为自身
	static uint8_t uNum = 0;                                                                          // 静态变量,用于循环计数
	 
  if(USART_GetITStatus(USART1,USART_IT_RXNE) != RESET)                                                // 判断读数据寄存器是否为非空
  {
    USART_ClearFlag(USART1, USART_IT_RXNE);                                                           // 清零读数据寄存器,其实硬件也可以自动清零
    USART_DataTypeStr.Usart_Rx_Buffer[USART_DataTypeStr.Usart_Rx_Num ++] = \
		(uint16_t)(USART1->DR & 0x01FF);                                                              // 将接收到的数据存入接收缓冲区
		(USART_DataTypeStr.Usart_Rx_Num) &= 0xFF;                                                     // 防止缓冲区溢出
  } 
	
	else if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)   // 检测空闲
	{
	  Clear = USART1 -> SR;                                                                         // 读SR位
		Clear = USART1 -> DR;                                                                       // 读DR位,
	  USART_DataTypeStr.Usart_Rx_Len = USART_DataTypeStr.Usart_Rx_Num;                              // 获取数据长度
		for(uNum = 0; uNum < USART_DataTypeStr.Usart_Rx_Len; uNum ++)          
		{
				USART_DataTypeStr.Usart_Rx_Data[uNum] = USART_DataTypeStr.Usart_Rx_Buffer[uNum];      // 将接收到的数据复制到接收数据缓冲区
		}
		USART_DataTypeStr.Usart_Rx_Num = 0;                                                           // 清空接收计数器
		USART_DataTypeStr.Usart_Rc_State = 1;                                                         // 数据读取标志位置1,读取串口数据
	}
	
	if(USART_GetITStatus(USART1,USART_IT_TXE) != RESET)                                                  // 判断发送寄存器是否为非空
  {
		USART1->DR = \
		((USART_DataTypeStr.Usart_Tx_Buffer[USART_DataTypeStr.Usart_Tx_Num ++]) & (uint16_t)0x01FF);    // 发送数据
		(USART_DataTypeStr.Usart_Tx_Num) &= 0xFF;                                                       // 防止缓冲区溢出
    if(USART_DataTypeStr.Usart_Tx_Num >= USART_DataTypeStr.Usart_Tx_Len)
    {   
			USART_ITConfig(USART1,USART_IT_TXE,DISABLE);                                                // 发送完数据,关闭发送中断
			USART_DataTypeStr.Usart_Tx_Num = 0;                                                         // 清空发送计数器
			USART_DataTypeStr.Usart_Tc_State = 1;                                                       // 发送标志置1,可以继续发送数据了
    } 		
	}
	
}

(5)无源蜂鸣器GPIO初始化函数( BEEP_Init())

初始化PA12端口,并为推挽输出。

c 复制代码
/*********************************************************************
 @Function  : 无源蜂鸣器引脚定义
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/ 
void BEEP_Init(void)
{ 
    GPIO_InitTypeDef  GPIO_InitStructure;                 // 定义GPIO初始化结构体变量
  
	/*时钟使能*/	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); // 使能GPIOA的时钟
	
	/*引脚配置*/		
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;            // 设置引脚为GPIOA的Pin 12,即BEEP对应的引脚
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;      // 设置引脚为推挽输出模式
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;     // 设置引脚的输出速度为50MHz
	GPIO_Init(GPIOA, &GPIO_InitStructure);                // 根据GPIO初始化结构体参数配置GPIOA
	GPIO_ResetBits(GPIOA,GPIO_Pin_12);                    // 将GPIOA的Pin 12引脚输出低电平
}

(6)合成音符函数( Sound())

c 复制代码
/*********************************************************************
 @Function  : 合成音符
 @Parameter : frq : 音符频率
 @Return    : N/A
**********************************************************************/
void Sound(uint16_t frq)
{
  uint32_t time;                     // 定义延时时间变量
  
  if(frq != 1000)                    // 判断音符频率是否为1000
  {
    time = 500000 / ((uint32_t)frq); // 计算延时时间
    BEEP = 1;                        // 给蜂鸣器引脚输出高电平,使蜂鸣器响
    delay_us(time);                  // 微秒级延时,使蜂鸣器持续一段时间
    BEEP = 0;                        // 给蜂鸣器引脚输出低电平,关闭蜂鸣器
    delay_us(time);                  // 微秒级延时,使蜂鸣器停止响
  }
  else
    delay_us(1000);                   // 如果音符频率为1000,直接进行1毫秒的延时
}

(7)播放音乐函数( play_music())

c 复制代码
/*********************************************************************
 @Function  : 播放音乐
 @Parameter : N/A
 @Return    : N/A
**********************************************************************/
void play_music(void)
{    
  uint16_t i, e;                                                       // 定义循环变量 i、e
  uint32_t yanshi = 10;                                                // 定义延时系数变量
  
  for(i = 0; i < sizeof(music) / sizeof(music[0]); i++)                // 外层循环遍历乐谱音调数组
  {
    for(e = 0; e < ((uint16_t)time[i]) * tone[music[i]] / yanshi; e++) // 内层循环根据乐谱和节拍时间控制音符持续时间
    {
       Sound((uint32_t)tone[music[i]]);                                // 调用合成音符函数,根据乐谱音调播放音符
    }
  }
}

3、宏定义

步骤1:主函数添加所需的头文件,主源文件部分报错消失

c 复制代码
//头文件包含
/***********Hardweare***************/
#include "led.h"
#include "passivebeep.h"

步骤2:添加中断源文件所需的头文件

c 复制代码
#include "stm32f10x_gpio.h"
#include "stm32f10x_rcc.h"
#include ".\delay\delay.h"
#include "passivebeep.h"

/******红海情歌******/
/*音调*/               // 0   1   2   3   4   5   6   7  低1  低2 低3 低4 低5 低6低7
const uint16_t tone[] = {247,262,294,330,349,392,440,294,523,587,659,698,784,1000};   
/*乐谱音调*/
uint8_t music[] = 
{
    5,5,6,8,7,6,5,6,13,13,5,5,6,8,7,6,5,3,13,13,2,2,3,5,3,5,6,3,2,1,6,6,5,6,5,3,6,5,13,13,
    5,5,6,8,7,6,5,6,13,13,5,5,6,8,7,6,5,3,13,13,2,2,3,5,3,5,6,3,2,1,6,6,5,6,5,3,6,1,    
    13,8,9,10,10,9,8,10,9,8,6,13,6,8,9,9,8,6,9,8,6,5,13,2,3,5,5,3,5,5,6,8,7,6,6,10,9,9,8,6,5,6,8
};
/*节拍时间*/
uint8_t time[] = 
{
    2,4,2,2,2,2,2,8,4, 4,2,4,2,2,2,2,2,8,4, 4, 2,4,2,4,2,2,4,2,2,8,2,4,2,2,2,2,2,8,4,4, 
    2,4,2,2,2,2,2,8,4, 4,2,4,2,2,2,2,2,8,4,4,2,4,2,4,2,2,4,2,2,8,2,4,2,2,2,2,2,8,
    4,2,2,2,4,2,2,2,2,2,8,4,2,2,2,4,2,2,2,2,2,8,4,2,2,2,4,2,2,5,2,6,2,4,2,2,2,4,2,4,2,2,12
};

步骤3:添加串口通信宏定义

c 复制代码
#define USART_RX_LEN  200               // 接收缓冲区最大长度
#define USART_TX_LEN  200               // 发送缓冲区最大长度
#define UART_NUM      10                // 串口结构体最大对象数量

步骤4:添加函数声明

c 复制代码
void usart1_init(uint32_t bound);
extern USART_DataTypeDef USART_DataTypeStr; 
char USART1_Send_Data(char* Data,uint8_t Lenth);

步骤5:添加数据类型和宏的头文件

c 复制代码
//定义串口数据结构体
typedef struct USART_DataType 
{
    uint8_t Usart_Rx_Len;          // 接收缓冲区长度
    uint8_t Usart_Tx_Len;          // 发送缓冲区长度
    uint8_t Usart_Rx_Num;          // 接收数据计数
    uint8_t Usart_Tx_Num;          // 发送数据计数
    uint8_t Usart_Rc_State;        // 接收状态标志位
    uint8_t Usart_Tc_State;        // 发送状态标志位
    char Usart_Rx_Buffer[USART_RX_LEN]; // 接收缓冲区
    char Usart_Tx_Buffer[USART_TX_LEN]; // 发送缓冲区
    char Usart_Rx_Data[USART_RX_LEN];   // 接收数据
    char Usart_Tx_Data[USART_TX_LEN];   // 发送数据
} USART_DataTypeDef;

步骤6:定义一个串口数组变量

c 复制代码
USART_DataTypeDef USART_DataTypeStr={0};

窗口看门狗宏定义

步骤1:创建一个宏定义保护

c 复制代码
#ifndef _WWDG_H
#define _WWDG_H



#endif

步骤2:添加函数声明

c 复制代码
void WWDG_Init(uint8_t tr,uint8_t wr,uint32_t fprer);
void WWDG_Set_Counter(uint8_t cnt);       
void WWDG_NVIC_Init(void);

步骤3:添加数据类型和宏的头文件

c 复制代码
#include <stdint.h> 

无源蜂鸣器头文件编辑

步骤1:创建一个宏定义保护

c 复制代码
#ifndef __PWM_H_
#define __PWM_H_



#endif

步骤2:添加函数声明

c 复制代码
//函数声明
void BEEP_Init(void);         
void Sound(uint16_t frq);
void play_music(void);

步骤3:添加数据类型和宏的头文件

c 复制代码
//宏定义
#define BEEP PAout(12)                // PA12

步骤3:添加数据类型和宏的头文件

c 复制代码
#include<stdint.h> 
#include ".\sys\sys.h"

4、知识链接

(1)无源蜂鸣器基础知识

无源蜂鸣器就像是一个小的震动装置,类似于手机的振动器。它的工作原理类似于我们轻轻敲击一个玻璃杯,它会产生清脆的声音。无源蜂鸣器中有一个特殊的材料,当我们给它通电时,它会开始振动,就像一个微型的震动器一样。这种振动产生了声音,就像我们用手敲击玻璃杯一样。通过控制通电的方式和频率,我们可以控制蜂鸣器发出的声音的音调和持续时间,就像我们用手敲击玻璃杯时可以产生不同音调的声音一样。

(2)音符与频率理解


5、工程测试

相关推荐
scan19 小时前
单片机串口接收状态机STM32
stm32·单片机·串口·51·串口接收
Qingniu019 小时前
【青牛科技】应用方案 | RTC实时时钟芯片D8563和D1302
科技·单片机·嵌入式硬件·实时音视频·安防·工控·储能
Mortal_hhh11 小时前
VScode的C/C++点击转到定义,不是跳转定义而是跳转声明怎么办?(内附详细做法)
ide·vscode·stm32·编辑器
深圳市青牛科技实业有限公司11 小时前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
Mr.谢尔比12 小时前
电赛入门之软件stm32keil+cubemx
stm32·单片机·嵌入式硬件·mcu·信息与通信·信号处理
LightningJie12 小时前
STM32中ARR(自动重装寄存器)为什么要减1
stm32·单片机·嵌入式硬件
鹿屿二向箔12 小时前
STM32外设之SPI的介绍
stm32
西瓜籽@13 小时前
STM32——毕设基于单片机的多功能节能窗控制系统
stm32·单片机·课程设计
远翔调光芯片^1382879887215 小时前
远翔升压恒流芯片FP7209X与FP7209M什么区别?做以下应用市场摄影补光灯、便携灯、智能家居(调光)市场、太阳能、车灯、洗墙灯、舞台灯必看!
科技·单片机·智能家居·能源
极客小张16 小时前
基于STM32的智能充电桩:集成RTOS、MQTT与SQLite的先进管理系统设计思路
stm32·单片机·嵌入式硬件·mqtt·sqlite·毕业设计·智能充电桩