机器学习每周挑战——信用卡申请用户数据分析

数据集的截图

复制代码
# 字段    说明
# Ind_ID    客户ID
# Gender    性别信息
# Car_owner 是否有车
# Propert_owner 是否有房产
# Children  子女数量
# Annual_income 年收入
# Type_Income   收入类型
# Education 教育程度
# Marital_status    婚姻状况
# Housing_type  居住方式
# Birthday_count    以当前日期为0,往前倒数天数,-1代表昨天
# Employed_days 雇佣开始日期。以当前日期为0,往前倒数天数。正值意味着个人目前未就业。
# Mobile_phone  手机号码
# Work_phone    工作电话
# Phone 电话号码
# EMAIL_ID  电子邮箱
# Type_Occupation   职业
# Family_Members    家庭人数
# Label 0表示申请通过,1表示申请拒绝

# 知道了数据集的情况,我们来看问题
# 问题描述
# 用户特征与信用卡申请结果之间存在哪些主要的相关性或规律?这些相关性反映出什么问题?
#
# 从申请用户的整体特征来看,银行信用卡业务可能存在哪些风险或改进空间?数据反映出的问题对银行信用卡业务有哪些启示?
#
# 根据数据集反映的客户画像和信用卡申请情况,如果你是该银行的风控或市场部门负责人,你会提出哪些战略思考或建议?
#
# 参考分析角度
# 用户画像分析
#
# 分析不同人口统计学特征(如性别、年龄、婚姻状况等)对信用卡申请的影响和规律
# 分析不同社会经济特征(如收入、职业、教育程度等)与申请结果的关系
# 特征选取和模型建立
#
# 评估不同特征对预测信用卡申请结果的重要性,进行特征筛选
# 建立信用卡申请结果预测模型,评估模型性能
# 申请结果分析
#
# 分析不同用户群的申请通过率情况,找到可能的问题原因
# 对申请被拒绝的用户进行细分,寻找拒绝的主要原因

# 知道问题后,我们先进行数据预处理
print(data.info()) # 有缺失值
print(data.isnull().sum() / len(data))  # 可以看出有的列缺失值有点多
复制代码
# GENDER               7   Annual_income       23   Birthday_count      22     Type_Occupation    488
# GENDER             0.004522   Annual_income      0.014858    Birthday_count     0.014212   Type_Occupation    0.315245
# Type_Occupation    0.315245 这一列缺失值数据占比有点高了,但是,这一列是职业,跟我们的业务相关性较高,我觉得应该将缺失值单独分为一个属性
# 其他的列的缺失值较少,woe们可以填充,也可以删除,我觉得对于信用卡这种模型精度要求较严的,我们就删除,填充的值不是很准确,可能对模型造成一定的影响
# 观察数据,我们可以发现,ID,电话号,邮箱这种特征对我们来说没有用 ,生日记数我也感觉没用
data['Type_Occupation'] = data['Type_Occupation'].fillna("无")
data = data.dropna()
data = data.drop(['Ind_ID','Mobile_phone','Work_Phone','Phone','EMAIL_ID','Birthday_count'],axis=1)
复制代码
# 分析不同人口统计学特征(如性别、年龄、婚姻状况等)对信用卡申请的影响和规律
# 分析不同社会经济特征(如收入、职业、教育程度等)与申请结果的关系
features = ['GENDER','EDUCATION','Marital_status','Annual_income','Type_Occupation','Type_Income']

for i in range(len(features)):
    # plt.subplot(2,3,i+1)
    plt.figure()

    if data[features[i]].dtype == float:
        data[features[i]] = pd.cut(data[features[i]],bins=10)
        features_data = data[features[i]].value_counts()
        plt.bar(features_data.index.astype(str),features_data.values)
    else:
        features_data = data.groupby(features[i])['label'].sum()
        features_data = features_data.sort_values(ascending=False)
        plt.bar(features_data.index,features_data.values)

    plt.title(features[i]+"与信用卡申请之间的关系")
    plt.xlabel(features[i])
    plt.ylabel("总数量")
    plt.xticks(rotation=60)
    plt.tight_layout()
复制代码
# 这样我们可以看出各个特征列与标签列之间的关系
# 我们看一下标签列的分布情况
labels = data['label'].value_counts()
# print(labels)

plt.figure()
plt.bar(labels.index,labels.values)
plt.title("信用卡申请人数比较")
plt.xticks([0,1],['未申请到信用卡','成功申请到信用卡'])
复制代码
# 由图可以看出,申请到信用卡的人数比没申请到信用卡的人数少,数据存在不均衡,因此我们建立模型时,要注意处理不均横的数据
# 由于计算机只能处理数字,因此我们先将字符型数据转换为数值型,这里我们可以用标签编码或者独热编码。这里我们选择标签编码
data['Annual_income'] = pd.factorize(data['Annual_income'])[0]
data['label'] = data['label'].astype(int)


for i in data.columns:
    if data[i].dtype == object:
        encode = LabelEncoder()
        data[i] = encode.fit_transform(data[i])

X = data.drop('label',axis=1)
y = data.label

rfc = RandomForestClassifier(n_estimators=100,random_state=42)
rfc.fit(X,y)

importance = rfc.feature_importances_
sort_importance = importance.argsort()
feature = X.columns

plt.figure()
plt.barh(range(len(sort_importance)),importance[sort_importance])
plt.yticks(range(len(sort_importance)), [feature[i] for i in sort_importance])
plt.title('特征重要性分析')
plt.xlabel("特征重要性")

# plt.show()

# 通过特征重要性分析我们可以看出离职天,年收入和职业类型与信用卡的申请有很大的关联

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42)

#分离少数类和多数类
X_minority = X_train[y_train == 1]
y_minority = y_train[y_train == 1]
X_majority = X_train[y_train == 0]
y_majority = y_train[y_train == 0]
X_minority_resampled = resample(X_minority, replace=True, n_samples=len(X_majority), random_state=42)
y_minority_resampled = resample(y_minority, replace=True, n_samples=len(y_majority), random_state=42)
new_X_train = pd.concat([X_majority, X_minority_resampled])
new_y_train = pd.concat([y_majority, y_minority_resampled])


rfc = RandomForestClassifier(n_estimators=100,random_state=42)
rfc.fit(new_X_train,new_y_train)
rfc_y_pred = rfc.predict(X_test)

class_report_rfc = classification_report(y_test,rfc_y_pred)
print(class_report_rfc)

# 有了准确率,F1分数等,我们来绘制混淆矩阵
rfc_corr = confusion_matrix(y_test,rfc_y_pred)
plt.figure()
sns.heatmap(rfc_corr,annot=True,fmt='g')
plt.title('随机森林的混淆矩阵')
# plt.show()
print(rfc.predict_proba(X_test)[:1])
rfc_fpr,rfc_tpr,_ = roc_curve(y_test,rfc.predict_proba(X_test)[:,1])
rfc_roc = auc(rfc_fpr,rfc_tpr)

plt.figure()
plt.plot(rfc_fpr,rfc_tpr,label='ROC(area = %0.2f)')
plt.plot([0,1],[0,1],linestyle='--')
plt.xlabel("False Rate")
plt.ylabel("True Rate")


svm = SVC(kernel='rbf',probability=True,random_state=42)
svm.fit(new_X_train,new_y_train)
svm_y_pred = svm.predict(X_test)

class_report_svm = classification_report(y_test,svm_y_pred)
print(class_report_svm)

# 混淆矩阵
svm_corr = confusion_matrix(y_test,svm_y_pred)
plt.figure()
sns.heatmap(svm_corr,annot=True,fmt='g')
plt.title('支持向量机(SVM)的混淆矩阵')

svm_fpr,svm_tpr,_ = roc_curve(y_test,svm.predict_proba(X_test)[:,1])
svm_roc = auc(svm_fpr,svm_tpr)

plt.figure()
plt.plot(svm_fpr,svm_tpr,label='ROC(area = %0.2f)')
plt.plot([0,1],[0,1],linestyle='--')
plt.xlabel("False Rate")
plt.ylabel("True Rate")


Xgb = xgb.XGBClassifier(random_state=42,use_label_encoder=False)
Xgb.fit(new_X_train,new_y_train)
Xgb_y_pred = Xgb.predict(X_test)

class_report_Xgb = classification_report(y_test,Xgb_y_pred)
print(class_report_Xgb)

# 混淆矩阵
Xgb_corr = confusion_matrix(y_test,Xgb_y_pred)
plt.figure()
sns.heatmap(Xgb_corr,annot=True,fmt='g')
plt.title('XGboost的混淆矩阵')

Xgb_fpr,Xgb_tpr,_ = roc_curve(y_test,Xgb.predict_proba(X_test)[:,1])
Xgb_roc = auc(Xgb_fpr,Xgb_tpr)

plt.figure()
plt.plot(Xgb_fpr,Xgb_tpr,label='ROC(area = %0.2f)')
plt.plot([0,1],[0,1],linestyle='--')
plt.xlabel("False Rate")
plt.ylabel("True Rate")

plt.show()

precision recall f1-score support (随机森林)

0 0.94 0.92 0.93 410 (0和1代表着标签列的0和1)

1 0.33 0.41 0.37 39

accuracy 0.88 449

macro avg 0.64 0.67 0.65 449

weighted avg 0.89 0.88 0.88 449

precision recall f1-score support (SVM)

0 0.95 0.05 0.10 410

1 0.09 0.97 0.16 39

accuracy 0.13 449

macro avg 0.52 0.51 0.13 449

weighted avg 0.88 0.13 0.10 449

precision recall f1-score support (XGboost)

0 0.94 0.92 0.93 410

1 0.34 0.41 0.37 39

accuracy 0.88 449

macro avg 0.64 0.67 0.65 449

weighted avg 0.89 0.88 0.88 449

相关推荐
python算法(魔法师版)1 小时前
基于机器学习鉴别中药材的方法
深度学习·线性代数·算法·机器学习·支持向量机·数据挖掘·动态规划
Amd7943 小时前
应用中的 PostgreSQL项目案例
postgresql·数据分析·数据库管理·最佳实践·技术架构·实际应用·项目案例
抱抱宝4 小时前
Pyecharts之特殊图表的独特展示
python·信息可视化·数据分析
灰灰老师7 小时前
数据分析系列--[11] RapidMiner,K-Means聚类分析(含数据集)
人工智能·算法·机器学习·数据挖掘·数据分析·kmeans·rapidminer
AIGC大时代8 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力
数据库·论文阅读·人工智能·chatgpt·数据分析·prompt
dreadp17 小时前
解锁豆瓣高清海报(二) 使用 OpenCV 拼接和压缩
图像处理·python·opencv·计算机视觉·数据分析
struggle202521 小时前
一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
人工智能·深度学习·目标检测·语言模型·自然语言处理·数据挖掘·集成学习
AIGC大时代1 天前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
东方佑1 天前
OpenAI承认开源策略错误,考虑调整策略并推出o3-mini模型
开发语言·数据分析
kaiyuanheshang1 天前
数据挖掘常用算法
人工智能·算法·数据挖掘