【数据分析面试】6.计算对话总数(SQL)

题目:计算对话总数

给定了名为 messenger_sends 的消息发送表格,找出总共有多少个唯一的对话。

注:在某些记录中,receiver_idsender_id 从初始消息中互换了。这些记录应视为同一个对话。

示例:

输入:

messenger_sends 表格

列名 类型
id 整数
receiver_id 整数
sender_id 整数

输出:

列名 类型
total_conv_threads 整数

答案

解题思路

要计算总共有多少个对话,首先需要考虑到对话是由一系列消息组成的,并且在某些情况下,消息的发送者和接收者可能会被交换。因此,我们需要将这些交换的情况考虑在内,将发送者和接收者的ID合并在一起,然后对这些合并后的ID进行计数。

也就是说,如果一条消息的receiver_id是A,sender_id是B,那么这条消息和receiver_id是B,sender_id是A的消息属于同一个对话。

我们可以创建一个新的列,将receiver_idsender_id按照由大到小的顺序组合起来。然后,我们可以对这个新列进行去重统计,得到的结果就是对话的总数量。

答案代码

复制代码
SELECT
	--计算唯一对话总数
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
    --重新组合对话双方id
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;

CONCAT()用法总结

在MySQL中,CONCAT() 函数用于将两个或多个字符串连接成一个更长的字符串。它接受一个或多个字符串作为参数,并返回连接后的结果。例如:

sql 复制代码
SELECT CONCAT('Hello', ' ', 'World'); -- 输出:Hello World

SELECT CONCAT(first_name, ' ', last_name) AS full_name FROM users; -- 将 first_name 和 last_name 字段连接成一个 full_name 字段

SELECT CONCAT('The user with ID ', user_id, ' has email: ', email) AS user_info FROM users; -- 使用字段值与常量字符串连接成一个信息字符串

MySQL中, CONCAT()函数主要用于的字符串连接,而Python中的字符串连接使用 + 操作符或 str.join() 方法,Pandas的pd.concat()函数则用于用于合并 Pandas 数据结构,如 DataFrame 或 Series 对象。

代码汇总

复制代码
--题目:求对话数量
-- 创建messenger_sends表格
CREATE TABLE messenger_sends (
    id INT AUTO_INCREMENT PRIMARY KEY,
    receiver_id INT,
    sender_id INT
);

--插入数据
INSERT INTO messenger_sends(receiver_id, sender_id) VALUES
(1, 2),
(2, 1),
(1, 2),
(1, 2),
(2, 1),
(3, 1),
(3, 1),
(3, 2),
(4, 5),
(5, 4),
(4, 5),
(5, 1),
(5, 1),
(5, 1),
(6, 7),
(8, 7),
(7, 9),
(7, 10);

--答案:求对话数量
SELECT
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;
相关推荐
sun0077001 小时前
mysql索引底层原理
数据库·mysql
workflower4 小时前
MDSE和敏捷开发相互矛盾之处:方法论本质的冲突
数据库·软件工程·敏捷流程·极限编程
Tony小周4 小时前
实现一个点击输入框可以弹出的数字软键盘控件 qt 5.12
开发语言·数据库·qt
lifallen4 小时前
Paimon 原子提交实现
java·大数据·数据结构·数据库·后端·算法
天天扭码4 小时前
很全面的前端面试——CSS篇(上)
前端·css·面试
TDengine (老段)5 小时前
TDengine 数据库建模最佳实践
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
Elastic 中国社区官方博客5 小时前
Elasticsearch 字符串包含子字符串:高级查询技巧
大数据·数据库·elasticsearch·搜索引擎·全文检索·lucene
Gauss松鼠会5 小时前
GaussDB应用场景全景解析:从金融核心到物联网的分布式数据库实践
数据库·分布式·物联网·金融·database·gaussdb
爱学习的茄子5 小时前
JavaScript事件循环深度解析:理解异步执行的本质
前端·javascript·面试
守城小轩6 小时前
Chromium 136 编译指南 - Android 篇:开发工具安装(三)
android·数据库·redis