【数据分析面试】6.计算对话总数(SQL)

题目:计算对话总数

给定了名为 messenger_sends 的消息发送表格,找出总共有多少个唯一的对话。

注:在某些记录中,receiver_idsender_id 从初始消息中互换了。这些记录应视为同一个对话。

示例:

输入:

messenger_sends 表格

列名 类型
id 整数
receiver_id 整数
sender_id 整数

输出:

列名 类型
total_conv_threads 整数

答案

解题思路

要计算总共有多少个对话,首先需要考虑到对话是由一系列消息组成的,并且在某些情况下,消息的发送者和接收者可能会被交换。因此,我们需要将这些交换的情况考虑在内,将发送者和接收者的ID合并在一起,然后对这些合并后的ID进行计数。

也就是说,如果一条消息的receiver_id是A,sender_id是B,那么这条消息和receiver_id是B,sender_id是A的消息属于同一个对话。

我们可以创建一个新的列,将receiver_idsender_id按照由大到小的顺序组合起来。然后,我们可以对这个新列进行去重统计,得到的结果就是对话的总数量。

答案代码

复制代码
SELECT
	--计算唯一对话总数
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
    --重新组合对话双方id
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;

CONCAT()用法总结

在MySQL中,CONCAT() 函数用于将两个或多个字符串连接成一个更长的字符串。它接受一个或多个字符串作为参数,并返回连接后的结果。例如:

sql 复制代码
SELECT CONCAT('Hello', ' ', 'World'); -- 输出:Hello World

SELECT CONCAT(first_name, ' ', last_name) AS full_name FROM users; -- 将 first_name 和 last_name 字段连接成一个 full_name 字段

SELECT CONCAT('The user with ID ', user_id, ' has email: ', email) AS user_info FROM users; -- 使用字段值与常量字符串连接成一个信息字符串

MySQL中, CONCAT()函数主要用于的字符串连接,而Python中的字符串连接使用 + 操作符或 str.join() 方法,Pandas的pd.concat()函数则用于用于合并 Pandas 数据结构,如 DataFrame 或 Series 对象。

代码汇总

复制代码
--题目:求对话数量
-- 创建messenger_sends表格
CREATE TABLE messenger_sends (
    id INT AUTO_INCREMENT PRIMARY KEY,
    receiver_id INT,
    sender_id INT
);

--插入数据
INSERT INTO messenger_sends(receiver_id, sender_id) VALUES
(1, 2),
(2, 1),
(1, 2),
(1, 2),
(2, 1),
(3, 1),
(3, 1),
(3, 2),
(4, 5),
(5, 4),
(4, 5),
(5, 1),
(5, 1),
(5, 1),
(6, 7),
(8, 7),
(7, 9),
(7, 10);

--答案:求对话数量
SELECT
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;
相关推荐
WeiQ_10 小时前
解决phpstudy 8.x软件中php8.2.9没有redis扩展的问题
数据库·redis·缓存
DashVector15 小时前
向量检索服务 DashVector产品计费
数据库·数据仓库·人工智能·算法·向量检索
KYGALYX16 小时前
在Linux中备份msyql数据库和表的详细操作
linux·运维·数据库
檀越剑指大厂16 小时前
金仓KReplay:定义数据库平滑迁移新标准
数据库
努力成为一个程序猿.16 小时前
【Flink】FlinkSQL-动态表和持续查询概念
大数据·数据库·flink
kali-Myon17 小时前
NewStarCTF2025-Week4-Web
sql·安全·web安全·php·ctf·ssti·ssrf
毕设十刻17 小时前
基于Vue的学分预警系统98k51(程序 + 源码 + 数据库 + 调试部署 + 开发环境配置),配套论文文档字数达万字以上,文末可获取,系统界面展示置于文末
前端·数据库·vue.js
liliangcsdn18 小时前
如何利用约束提示优化LLM在问题转sql的一致性
数据库·sql
Java爱好狂.18 小时前
分布式ID|从源码角度深度解析美团Leaf双Buffer优化方案
java·数据库·分布式·分布式id·es·java面试·java程序员
Elastic 中国社区官方博客18 小时前
通过混合搜索重排序提升多语言嵌入模型的相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索