【数据分析面试】6.计算对话总数(SQL)

题目:计算对话总数

给定了名为 messenger_sends 的消息发送表格,找出总共有多少个唯一的对话。

注:在某些记录中,receiver_idsender_id 从初始消息中互换了。这些记录应视为同一个对话。

示例:

输入:

messenger_sends 表格

列名 类型
id 整数
receiver_id 整数
sender_id 整数

输出:

列名 类型
total_conv_threads 整数

答案

解题思路

要计算总共有多少个对话,首先需要考虑到对话是由一系列消息组成的,并且在某些情况下,消息的发送者和接收者可能会被交换。因此,我们需要将这些交换的情况考虑在内,将发送者和接收者的ID合并在一起,然后对这些合并后的ID进行计数。

也就是说,如果一条消息的receiver_id是A,sender_id是B,那么这条消息和receiver_id是B,sender_id是A的消息属于同一个对话。

我们可以创建一个新的列,将receiver_idsender_id按照由大到小的顺序组合起来。然后,我们可以对这个新列进行去重统计,得到的结果就是对话的总数量。

答案代码

复制代码
SELECT
	--计算唯一对话总数
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
    --重新组合对话双方id
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;

CONCAT()用法总结

在MySQL中,CONCAT() 函数用于将两个或多个字符串连接成一个更长的字符串。它接受一个或多个字符串作为参数,并返回连接后的结果。例如:

sql 复制代码
SELECT CONCAT('Hello', ' ', 'World'); -- 输出:Hello World

SELECT CONCAT(first_name, ' ', last_name) AS full_name FROM users; -- 将 first_name 和 last_name 字段连接成一个 full_name 字段

SELECT CONCAT('The user with ID ', user_id, ' has email: ', email) AS user_info FROM users; -- 使用字段值与常量字符串连接成一个信息字符串

MySQL中, CONCAT()函数主要用于的字符串连接,而Python中的字符串连接使用 + 操作符或 str.join() 方法,Pandas的pd.concat()函数则用于用于合并 Pandas 数据结构,如 DataFrame 或 Series 对象。

代码汇总

复制代码
--题目:求对话数量
-- 创建messenger_sends表格
CREATE TABLE messenger_sends (
    id INT AUTO_INCREMENT PRIMARY KEY,
    receiver_id INT,
    sender_id INT
);

--插入数据
INSERT INTO messenger_sends(receiver_id, sender_id) VALUES
(1, 2),
(2, 1),
(1, 2),
(1, 2),
(2, 1),
(3, 1),
(3, 1),
(3, 2),
(4, 5),
(5, 4),
(4, 5),
(5, 1),
(5, 1),
(5, 1),
(6, 7),
(8, 7),
(7, 9),
(7, 10);

--答案:求对话数量
SELECT
    COUNT(DISTINCT thread_id) AS total_conv_threads
FROM
    (
        SELECT
            CASE
                WHEN sender_id < receiver_id THEN CONCAT(sender_id, '_', receiver_id)
                ELSE CONCAT(receiver_id, '_', sender_id)
            END AS thread_id
        FROM
            messenger_sends
    ) AS threads;
相关推荐
m0_736927043 分钟前
想抓PostgreSQL里的慢SQL?pg_stat_statements基础黑匣子和pg_stat_monitor时间窗,谁能帮你更准揪出性能小偷?
java·数据库·sql·postgresql
lang201509284 分钟前
MySQL 8.0.29 及以上版本中 SSL/TLS 会话复用(Session Reuse)
数据库·mysql
绝无仅有14 分钟前
面试真实经历某商银行大厂数据库MYSQL问题和答案总结(一)
后端·面试·github
绝无仅有15 分钟前
Docker 实战经验之关键文件误删恢复指南
后端·面试·github
望获linux31 分钟前
【实时Linux实战系列】使用 u-trace 或 a-trace 进行用户态应用剖析
java·linux·前端·网络·数据库·elasticsearch·操作系统
Dream it possible!1 小时前
LeetCode 面试经典 150_栈_简化路径(53_71_C++_中等)(栈+stringstream)
c++·leetcode·面试·
爱和冰阔落1 小时前
【C++继承下】继承与友元 / static 菱形继承与虚继承 组合的详解分析
c++·面试·腾讯云ai代码助手
清和与九1 小时前
binLog、redoLog和undoLog的区别
数据库·oracle
望获linux1 小时前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
总有刁民想爱朕ha1 小时前
Python自动化从入门到实战(24)如何高效的备份mysql数据库,数据备份datadir目录直接复制可行吗?一篇给小白的完全指南
数据库·python·自动化·mysql数据库备份