吹爆!遥感高光谱分类(Python)

目录

一、数据集下载

二、安装包

三、数据处理

四、模型训练

五、模型推理

六、踩坑记录


一、数据集下载

Hyperspectral Remote Sensing Scenes - Grupo de Inteligencia Computacional (GIC) (ehu.eus)

Installing SPy --- Spectral Python 0.21 documentation

二、安装包

Spectral Python (SPy)是一个用于处理高光谱图像数据的纯Python模块。它具有读取、显示、操作和分类高光谱图像的功能。

Spectral安装:

官网链接:

Installing SPy --- Spectral Python 0.21 documentation

安装命令:

复制代码
pip install spectral   

三、数据处理

加载数据、统计元素个数、光谱图显示、重构需要用到的类、标准化数据并存储

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import cv2
import pandas as pd
from sklearn import preprocessing

print("OpenCV version:", cv2.__version__)
print("Spectral version:", spectral.__version__)

input_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxxx/KSC.mat')['KSC']  #数据
output_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxx/KSC_gt.mat')['KSC_gt']#标签

dict_k = {}
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        #if output_image[i][j] in [m for m in range(1,17)]:
        if output_image[i][j] in [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13]:
            if output_image[i][j] not in dict_k:
                dict_k[output_image[i][j]]=0
            dict_k[output_image[i][j]] +=1
            
print (dict_k)
#print (reduce(lambda x,y:x+y,dict_k.values()))


ksc_color =np.array([[255,255,255],
     [184,40,99],
     [74,77,145],
     [35,102,193],
     [238,110,105],
     [117,249,76],
     [114,251,253],
     [126,196,59],
     [234,65,247],
     [141,79,77],
     [183,40,99],
     [0,39,245],
     [90,196,111],
        ])

ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)

cv2.imshow('1',output_image)  #没有实质性的作用,解决spectral.imshow闪退问题
cv2.waitKey(0)


# 除掉 0 这个非分类的类,把所有需要分类的元素提取出来
need_label = np.zeros([output_image.shape[0],output_image.shape[1]])
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0:
            need_label[i][j] = output_image[i][j]
        
            
new_datawithlabel_list = []
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if need_label[i][j] != 0:
            c2l = list(input_image[i][j])
            c2l.append(need_label[i][j])
            new_datawithlabel_list.append(c2l)

new_datawithlabel_array = np.array(new_datawithlabel_list)  
data_D = preprocessing.StandardScaler().fit_transform(new_datawithlabel_array[:,:-1])
data_L = new_datawithlabel_array[:,-1]

new = np.column_stack((data_D,data_L))
new_ = pd.DataFrame(new)
new_.to_csv(r'C:xxxxxxxx/KSC.csv',header=False,index=False)# 将结果存档后续处理

四、模型训练

复制代码
import joblib
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.svm import SVC
from sklearn import metrics
from sklearn import preprocessing
import pandas as pd


# 导入数据集切割训练与测试数据
data = pd.read_csv(r'C:xxxxxxxxxxxxx/KSC.csv',header=None)
data = data.values
data_D = data[:,:-1]
data_L = data[:,-1]
data_train, data_test, label_train, label_test = train_test_split(data_D,data_L,test_size=0.5)


# 模型训练与拟合
clf = SVC(kernel='rbf',gamma=0.125,C=16)
clf.fit(data_train,label_train)
pred = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, pred)*100
print (accuracy)


# 存储结果学习模型,方便之后的调用
joblib.dump(clf, "KSC_MODEL.m")

五、模型推理

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import joblib
from sklearn import metrics
import cv2

# KSC
input_image = loadmat(r'C:\xxxxxxxxxxx/KSC.mat')['KSC']
output_image = loadmat(r'C:\xxxxxxxxxx/KSC_gt.mat')['KSC_gt']


testdata = np.genfromtxt(r'C:\xxxxxxxx/KSC.csv',delimiter=',')
data_test = testdata[:,:-1]
label_test = testdata[:,-1]

clf = joblib.load("KSC_MODEL.m")

predict_label = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, predict_label)*100

print (accuracy) # 97.1022836308


# 将预测的结果匹配到图像中
new_show = np.zeros((output_image.shape[0],output_image.shape[1]))
k = 0
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0 :
            new_show[i][j] = predict_label[k]
            k +=1 
            

# 展示地物
ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9))
ground_predict = spectral.imshow(classes = new_show.astype(int), figsize =(9,9))

cv2.imshow('1',output_image)
cv2.waitKey(0)

六、踩坑记录

(1)问题描述:spectral.imshow(img)时,图像一闪而过 ,并且spectral好像没有类似CV2waitKey方法。所以无法暂停。

C:\Users\admin\AppData\Roaming\Python\Python38\site-packages\spectral\graphics\spypylab.py:796: UserWarning: Failed to create RectangleSelector object. Interactive pixel class labeling will be unavailable.

warnings.warn(msg)

解决方法:借助CV2的waitKey

在ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)下加入cv图像显示

cv2.imshow('1',output_image)

cv2.waitKey(0)

(2)问题描述:AttributeError: module 'spectral' has no attribute 'preprocessing'

解决方法:

导入该模块

from sklearn import preprocessing

(3)问题描述:AttributeError: 'DataFrame' object has no attribute 'as_matrix'

解决方法:as_matrix()属性已被淘汰,所以DataFrame对象没有as_matrix属性

解决方法:将 as_matrix() 改为 values

示例如下:

将:

data = data.as_matrix()

改为:

data = data.values

相关推荐
fundroid14 分钟前
AI 创业的机遇、趋势与实践指南 - 吴恩达在 YC AI Startup School 演讲深度解读
人工智能
bst@微胖子20 分钟前
WGAI项目图像视频语音识别功能
人工智能·语音识别·xcode
yBmZlQzJ24 分钟前
PyQt5 修改标签字体和颜色的程序
开发语言·python·qt
胖达不服输26 分钟前
「日拱一码」081 机器学习——梯度增强特征选择GBFS
人工智能·python·算法·机器学习·梯度增强特征选择·gbfs
大千AI助手28 分钟前
VeRL:强化学习与大模型训练的高效融合框架
人工智能·深度学习·神经网络·llm·强化学习·verl·字节跳动seed
float_六七29 分钟前
Java Stream流:从入门到精通
java·windows·python
灵犀物润33 分钟前
2025年AI PPT必修课-汇报中AI相关内容的“陷阱”与“亮点”
人工智能·powerpoint
TMT星球35 分钟前
发布工业智能体,云从科技打造制造业AI“运营大脑”
大数据·人工智能·科技
星空的资源小屋37 分钟前
PPTist,一个完全免费的 AI 生成 PPT 在线网站
人工智能·python·电脑·excel
全年无休的IT老兵39 分钟前
使用AI工具一句话生成PPT
人工智能·powerpoint