吹爆!遥感高光谱分类(Python)

目录

一、数据集下载

二、安装包

三、数据处理

四、模型训练

五、模型推理

六、踩坑记录


一、数据集下载

Hyperspectral Remote Sensing Scenes - Grupo de Inteligencia Computacional (GIC) (ehu.eus)

Installing SPy --- Spectral Python 0.21 documentation

二、安装包

Spectral Python (SPy)是一个用于处理高光谱图像数据的纯Python模块。它具有读取、显示、操作和分类高光谱图像的功能。

Spectral安装:

官网链接:

Installing SPy --- Spectral Python 0.21 documentation

安装命令:

复制代码
pip install spectral   

三、数据处理

加载数据、统计元素个数、光谱图显示、重构需要用到的类、标准化数据并存储

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import cv2
import pandas as pd
from sklearn import preprocessing

print("OpenCV version:", cv2.__version__)
print("Spectral version:", spectral.__version__)

input_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxxx/KSC.mat')['KSC']  #数据
output_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxx/KSC_gt.mat')['KSC_gt']#标签

dict_k = {}
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        #if output_image[i][j] in [m for m in range(1,17)]:
        if output_image[i][j] in [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13]:
            if output_image[i][j] not in dict_k:
                dict_k[output_image[i][j]]=0
            dict_k[output_image[i][j]] +=1
            
print (dict_k)
#print (reduce(lambda x,y:x+y,dict_k.values()))


ksc_color =np.array([[255,255,255],
     [184,40,99],
     [74,77,145],
     [35,102,193],
     [238,110,105],
     [117,249,76],
     [114,251,253],
     [126,196,59],
     [234,65,247],
     [141,79,77],
     [183,40,99],
     [0,39,245],
     [90,196,111],
        ])

ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)

cv2.imshow('1',output_image)  #没有实质性的作用,解决spectral.imshow闪退问题
cv2.waitKey(0)


# 除掉 0 这个非分类的类,把所有需要分类的元素提取出来
need_label = np.zeros([output_image.shape[0],output_image.shape[1]])
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0:
            need_label[i][j] = output_image[i][j]
        
            
new_datawithlabel_list = []
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if need_label[i][j] != 0:
            c2l = list(input_image[i][j])
            c2l.append(need_label[i][j])
            new_datawithlabel_list.append(c2l)

new_datawithlabel_array = np.array(new_datawithlabel_list)  
data_D = preprocessing.StandardScaler().fit_transform(new_datawithlabel_array[:,:-1])
data_L = new_datawithlabel_array[:,-1]

new = np.column_stack((data_D,data_L))
new_ = pd.DataFrame(new)
new_.to_csv(r'C:xxxxxxxx/KSC.csv',header=False,index=False)# 将结果存档后续处理

四、模型训练

复制代码
import joblib
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.svm import SVC
from sklearn import metrics
from sklearn import preprocessing
import pandas as pd


# 导入数据集切割训练与测试数据
data = pd.read_csv(r'C:xxxxxxxxxxxxx/KSC.csv',header=None)
data = data.values
data_D = data[:,:-1]
data_L = data[:,-1]
data_train, data_test, label_train, label_test = train_test_split(data_D,data_L,test_size=0.5)


# 模型训练与拟合
clf = SVC(kernel='rbf',gamma=0.125,C=16)
clf.fit(data_train,label_train)
pred = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, pred)*100
print (accuracy)


# 存储结果学习模型,方便之后的调用
joblib.dump(clf, "KSC_MODEL.m")

五、模型推理

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import joblib
from sklearn import metrics
import cv2

# KSC
input_image = loadmat(r'C:\xxxxxxxxxxx/KSC.mat')['KSC']
output_image = loadmat(r'C:\xxxxxxxxxx/KSC_gt.mat')['KSC_gt']


testdata = np.genfromtxt(r'C:\xxxxxxxx/KSC.csv',delimiter=',')
data_test = testdata[:,:-1]
label_test = testdata[:,-1]

clf = joblib.load("KSC_MODEL.m")

predict_label = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, predict_label)*100

print (accuracy) # 97.1022836308


# 将预测的结果匹配到图像中
new_show = np.zeros((output_image.shape[0],output_image.shape[1]))
k = 0
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0 :
            new_show[i][j] = predict_label[k]
            k +=1 
            

# 展示地物
ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9))
ground_predict = spectral.imshow(classes = new_show.astype(int), figsize =(9,9))

cv2.imshow('1',output_image)
cv2.waitKey(0)

六、踩坑记录

(1)问题描述:spectral.imshow(img)时,图像一闪而过 ,并且spectral好像没有类似CV2waitKey方法。所以无法暂停。

C:\Users\admin\AppData\Roaming\Python\Python38\site-packages\spectral\graphics\spypylab.py:796: UserWarning: Failed to create RectangleSelector object. Interactive pixel class labeling will be unavailable.

warnings.warn(msg)

解决方法:借助CV2的waitKey

在ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)下加入cv图像显示

cv2.imshow('1',output_image)

cv2.waitKey(0)

(2)问题描述:AttributeError: module 'spectral' has no attribute 'preprocessing'

解决方法:

导入该模块

from sklearn import preprocessing

(3)问题描述:AttributeError: 'DataFrame' object has no attribute 'as_matrix'

解决方法:as_matrix()属性已被淘汰,所以DataFrame对象没有as_matrix属性

解决方法:将 as_matrix() 改为 values

示例如下:

将:

data = data.as_matrix()

改为:

data = data.values

相关推荐
老艾的AI世界5 分钟前
AI制作祝福视频,直播礼物收不停,广州塔、动态彩灯、LED表白(附下载链接)
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·ai视频·ai视频生成·ai视频制作
IT古董16 分钟前
【漫话机器学习系列】250.异或函数(XOR Function)
人工智能·机器学习
Blossom.11824 分钟前
虚拟现实(VR)与增强现实(AR)在教育领域的应用:开启沉浸式学习新时代
人工智能·深度学习·学习·机器学习·ar·制造·vr
小白学大数据24 分钟前
Python爬虫中time.sleep()与动态加载的配合使用
爬虫·python·scrapy·数据分析
搬砖的小码农_Sky29 分钟前
人形机器人:主控芯片
人工智能·机器人·硬件架构·硬件工程·gpu算力
小饕33 分钟前
LangChain构建大模型应用之问答系统(五)
人工智能·python·langchain
zhutoutoutousan36 分钟前
自动化创业机器人:现状、挑战与Y Combinator的启示
人工智能·机器人·自动化
奋斗者1号1 小时前
机器学习之数据转换策略
人工智能·机器学习
David Bates1 小时前
代码随想录第41天:图论2(岛屿系列)
python·算法·图论
大G哥1 小时前
ReSearch:基于强化学习的大语言模型推理搜索框架
人工智能·语言模型·自然语言处理