吹爆!遥感高光谱分类(Python)

目录

一、数据集下载

二、安装包

三、数据处理

四、模型训练

五、模型推理

六、踩坑记录


一、数据集下载

Hyperspectral Remote Sensing Scenes - Grupo de Inteligencia Computacional (GIC) (ehu.eus)

Installing SPy --- Spectral Python 0.21 documentation

二、安装包

Spectral Python (SPy)是一个用于处理高光谱图像数据的纯Python模块。它具有读取、显示、操作和分类高光谱图像的功能。

Spectral安装:

官网链接:

Installing SPy --- Spectral Python 0.21 documentation

安装命令:

复制代码
pip install spectral   

三、数据处理

加载数据、统计元素个数、光谱图显示、重构需要用到的类、标准化数据并存储

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import cv2
import pandas as pd
from sklearn import preprocessing

print("OpenCV version:", cv2.__version__)
print("Spectral version:", spectral.__version__)

input_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxxx/KSC.mat')['KSC']  #数据
output_image = loadmat(r'C:\xxxxxxxxxxxxxxxxxxxxxx/KSC_gt.mat')['KSC_gt']#标签

dict_k = {}
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        #if output_image[i][j] in [m for m in range(1,17)]:
        if output_image[i][j] in [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13]:
            if output_image[i][j] not in dict_k:
                dict_k[output_image[i][j]]=0
            dict_k[output_image[i][j]] +=1
            
print (dict_k)
#print (reduce(lambda x,y:x+y,dict_k.values()))


ksc_color =np.array([[255,255,255],
     [184,40,99],
     [74,77,145],
     [35,102,193],
     [238,110,105],
     [117,249,76],
     [114,251,253],
     [126,196,59],
     [234,65,247],
     [141,79,77],
     [183,40,99],
     [0,39,245],
     [90,196,111],
        ])

ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)

cv2.imshow('1',output_image)  #没有实质性的作用,解决spectral.imshow闪退问题
cv2.waitKey(0)


# 除掉 0 这个非分类的类,把所有需要分类的元素提取出来
need_label = np.zeros([output_image.shape[0],output_image.shape[1]])
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0:
            need_label[i][j] = output_image[i][j]
        
            
new_datawithlabel_list = []
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if need_label[i][j] != 0:
            c2l = list(input_image[i][j])
            c2l.append(need_label[i][j])
            new_datawithlabel_list.append(c2l)

new_datawithlabel_array = np.array(new_datawithlabel_list)  
data_D = preprocessing.StandardScaler().fit_transform(new_datawithlabel_array[:,:-1])
data_L = new_datawithlabel_array[:,-1]

new = np.column_stack((data_D,data_L))
new_ = pd.DataFrame(new)
new_.to_csv(r'C:xxxxxxxx/KSC.csv',header=False,index=False)# 将结果存档后续处理

四、模型训练

复制代码
import joblib
from sklearn.model_selection import KFold
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.svm import SVC
from sklearn import metrics
from sklearn import preprocessing
import pandas as pd


# 导入数据集切割训练与测试数据
data = pd.read_csv(r'C:xxxxxxxxxxxxx/KSC.csv',header=None)
data = data.values
data_D = data[:,:-1]
data_L = data[:,-1]
data_train, data_test, label_train, label_test = train_test_split(data_D,data_L,test_size=0.5)


# 模型训练与拟合
clf = SVC(kernel='rbf',gamma=0.125,C=16)
clf.fit(data_train,label_train)
pred = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, pred)*100
print (accuracy)


# 存储结果学习模型,方便之后的调用
joblib.dump(clf, "KSC_MODEL.m")

五、模型推理

复制代码
import matplotlib.pyplot as plt  
import numpy as np
from scipy.io import loadmat
import spectral
import joblib
from sklearn import metrics
import cv2

# KSC
input_image = loadmat(r'C:\xxxxxxxxxxx/KSC.mat')['KSC']
output_image = loadmat(r'C:\xxxxxxxxxx/KSC_gt.mat')['KSC_gt']


testdata = np.genfromtxt(r'C:\xxxxxxxx/KSC.csv',delimiter=',')
data_test = testdata[:,:-1]
label_test = testdata[:,-1]

clf = joblib.load("KSC_MODEL.m")

predict_label = clf.predict(data_test)
accuracy = metrics.accuracy_score(label_test, predict_label)*100

print (accuracy) # 97.1022836308


# 将预测的结果匹配到图像中
new_show = np.zeros((output_image.shape[0],output_image.shape[1]))
k = 0
for i in range(output_image.shape[0]):
    for j in range(output_image.shape[1]):
        if output_image[i][j] != 0 :
            new_show[i][j] = predict_label[k]
            k +=1 
            

# 展示地物
ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9))
ground_predict = spectral.imshow(classes = new_show.astype(int), figsize =(9,9))

cv2.imshow('1',output_image)
cv2.waitKey(0)

六、踩坑记录

(1)问题描述:spectral.imshow(img)时,图像一闪而过 ,并且spectral好像没有类似CV2waitKey方法。所以无法暂停。

C:\Users\admin\AppData\Roaming\Python\Python38\site-packages\spectral\graphics\spypylab.py:796: UserWarning: Failed to create RectangleSelector object. Interactive pixel class labeling will be unavailable.

warnings.warn(msg)

解决方法:借助CV2的waitKey

在ground_truth = spectral.imshow(classes = output_image.astype(int),figsize =(9,9),colors=ksc_color)下加入cv图像显示

cv2.imshow('1',output_image)

cv2.waitKey(0)

(2)问题描述:AttributeError: module 'spectral' has no attribute 'preprocessing'

解决方法:

导入该模块

from sklearn import preprocessing

(3)问题描述:AttributeError: 'DataFrame' object has no attribute 'as_matrix'

解决方法:as_matrix()属性已被淘汰,所以DataFrame对象没有as_matrix属性

解决方法:将 as_matrix() 改为 values

示例如下:

将:

data = data.as_matrix()

改为:

data = data.values

相关推荐
DFT计算杂谈几秒前
免注册下载各个版本Anaconda3/Miniconda3
python
Apache Flink2 分钟前
Apache Flink 2.2.0: 推动实时数据与人工智能融合,赋能AI时代的流处理
人工智能·搜索引擎·百度·flink·apache
小二·5 分钟前
DeepSeek应该怎样提问?
人工智能
zhaodiandiandian6 分钟前
2025 AI 革命:从技术深耕到产业生态的全面重构
人工智能·重构
得贤招聘官11 分钟前
AI 招聘高效解决方案
人工智能
jimmyleeee11 分钟前
人工智能基础知识笔记二十三:构建一个可以查询数据库的Agent
人工智能·笔记
oliveray12 分钟前
动手搭建Flamingo(VQA)
人工智能·深度学习·vlms
EAIReport15 分钟前
AI数据报告产品在文旅景区运营中的实践与技术实现
人工智能
进阶的小蜉蝣15 分钟前
[Machine Learning] 机器学习中的Collate
人工智能·机器学习
币之互联万物17 分钟前
科技赋能金融 共建数字化跨境投资新生态
人工智能·科技·金融