基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
-To be number.wan7 小时前
Python数据分析:SciPy科学计算
python·学习·数据分析
-To be number.wan13 小时前
用 Pandas 分析自行车租赁数据:从时间序列到天气影响的完整实训
python·数据分析·pandas·数据可视化
hhzz1 天前
使用Python对MySQL进行数据分析
python·mysql·数据分析
workflower1 天前
业务需求场景
数据分析·测试用例·需求分析·软件需求
城数派2 天前
我国逐日地表气压栅格数据(2005-2025年)
大数据·数据分析
jiaozi_zzq2 天前
2026年大数据与财务管理专业就业岗位全解析与进阶指南
大数据·数据分析·证书·财务
Katecat996632 天前
【深度学习】基于Mask R-CNN的帽子佩戴检测与分类详解(附改进模型+源码)
深度学习·r语言·cnn
城数派2 天前
2001-2024年我国乡镇级的逐年植被净初级生产力(NPP)数据(Shp/Excel格式)
大数据·数据分析·excel
zh25263 天前
从"会写SQL"到"懂业务":智能问数Agent的三层Grounding实践
人工智能·数据分析·产品经理
Data-Miner3 天前
本地化数据分析 agent,让 Excel 数据分析零门槛高效化
数据挖掘·数据分析·excel