基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
沐墨染6 小时前
黑词分析与可疑对话挖掘组件的设计与实现
前端·elementui·数据挖掘·数据分析·vue·visual studio code
Faker66363aaa10 小时前
使用Faster R-CNN实现胚胎发育阶段自动检测与分类——基于R50-FPN模型与COCO数据集训练
分类·r语言·cnn
Aloudata19 小时前
NoETL 指标平台与现有数据中台、治理体系的融合之道
数据仓库·数据分析·自动化·etl·noetl
babe小鑫20 小时前
大专应用统计学专业学习数据分析的实用性分析
学习·数据挖掘·数据分析
Lun3866buzha21 小时前
摩托车目标检测与识别|基于Mask R-CNN_x101-64x4d_FPN_1x_COCO模型的实现
目标检测·r语言·cnn
Aloudata21 小时前
企业级指标中台 API/JDBC 架构选型四步法
大数据·数据分析·etl·指标平台
SQL必知必会21 小时前
SQL 数据分析终极指南
数据库·sql·数据分析
YangYang9YangYan1 天前
2026中专大数据与会计专业数据分析发展路径
大数据·数据挖掘·数据分析
YangYang9YangYan1 天前
2026大专大数据技术专业学数据分析指南
大数据·数据挖掘·数据分析