基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
大数据魔法师28 分钟前
昭通天气数据分析与挖掘(三)- 昭通天气数据可视化分析
信息可视化·数据分析·finebi
十三画者1 小时前
【文献分享】vConTACT3机器学习能够实现可扩展且系统的病毒分类体系的构建
人工智能·算法·机器学习·数据挖掘·数据分析
小艳加油1 小时前
R语言生态环境数据分析:从基础操作到水文、地形、物种多度、空间聚类、排序与生物多样性的系统应用
数据分析·r语言·生态环境
Serendipity_Carl1 小时前
京东手机销售数据分析: 从数据清洗到可视化仪表盘
python·数据分析·pandas·pyecharts
阿里云大数据AI技术15 小时前
# Hologres Dynamic Table:高效增量刷新,构建实时统一数仓的核心利器
人工智能·数据分析
沃达德软件16 小时前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
无水先生1 天前
随机变量在代数运算中的误差传播(2/2)
概率论·统计学
MatrixOrigin1 天前
在数据库里玩“平行宇宙”:MatrixOne Data Branch 让数据也拥有Git 的分支/合并/对比/回滚(含跨集群同步)
git·sql·数据分析
头发没了还会再长2 天前
Basic statistics - 12. One-way ANOVA Basics
统计学·statistics
思迈特Smartbi2 天前
思迈特软件斩获鲲鹏应用创新大赛(华南赛区) “最佳原生创新奖”
人工智能·ai·数据分析·bi·商业智能