基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
YangYang9YangYan3 小时前
2026高职大数据管理与应用专业学数据分析的价值分析
数据挖掘·数据分析
一只爱学习的小鱼儿8 小时前
在QT中使用饼状图进行数据分析
开发语言·qt·数据分析
反向跟单策略8 小时前
期货反向跟单-贵金属牛市中的反向跟单密码
大数据·人工智能·学习·数据分析·区块链
探序基因10 小时前
R语言-使用pheatmap函数画热图
开发语言·r语言
琛説10 小时前
【时间序列】MSSP股票数据集(含市场情绪、上证指数等指标)
深度学习·数据分析
DX_水位流量监测11 小时前
阵列雷达波测流监测技术:原理、参数与应用实践
大数据·网络·人工智能·信息可视化·数据分析
、BeYourself11 小时前
基于 K-means 聚类的天天基金数据分析、挖掘、可视化
数据分析·kmeans·聚类
2501_9449347312 小时前
中专财务人员转型数据分析的可行性分析
数据挖掘·数据分析
2501_9449347314 小时前
高职学历转行电商运营的数据分析学习路径
学习·数据挖掘·数据分析
belldeep14 小时前
什么是探索性数据分析 (EDA)?
数据挖掘·数据分析·eda