基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
逻极12 小时前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
醉卧考场君莫笑12 小时前
数据分析常用方法:上
数据挖掘·数据分析
小王毕业啦12 小时前
2003-2023年 285个地级市邻接矩阵、经济地理矩阵等8个矩阵数据
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
2501_9418036213 小时前
在奥斯陆智能水利场景中构建实时水资源调度与高并发水质数据分析平台的工程设计实践经验分享
数据挖掘·数据分析·云计算
城数派15 小时前
2001-2024年全球500米分辨率逐年土地覆盖类型栅格数据
大数据·人工智能·数据分析
AC赳赳老秦15 小时前
前端可视化组件开发:DeepSeek辅助Vue/React图表组件编写实战
前端·vue.js·人工智能·react.js·信息可视化·数据分析·deepseek
kong790692816 小时前
Pandas简介
信息可视化·数据分析·pandas
产品设计大观16 小时前
数据分析后台/移动端设计要点梳理,附AI生成原型图实战案例
大数据·人工智能·数据分析·产品经理·墨刀·数据分析后台·ai生成原型图
爱喝可乐的老王17 小时前
数据分析实践--数据解析购房关键
信息可视化·数据分析·pandas·matplotlib
电商API_1800790524718 小时前
获取淘宝商品视频API教程:从授权到落地实战
大数据·数据库·人工智能·数据分析·音视频