基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程

原文链接:基于R语言地理加权回归、主成份分析、判别分析等空间异质性数据分析教程https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247600473&idx=6&sn=431e9408a42862d29fe4f4ef7703595b&chksm=fa8208becdf581a820d9479d2aa61b88e96612c4ab72b07d4ab2db8d18824d13950e51cdaa64&token=1458786269&lang=zh_CN#rd

前言

在自然和社会科学领域有大量与地理或空间有关的数据,这一类数据一般具有严重的空间异质性,而通常的统计学方法并不能处理空间异质性,因而对此类型的数据无能为力。以地理加权回归为基础的一系列方法:经典地理加权回归,半参数地理加权回归、多尺度地理加权回归、地理加权主成份分析、地理加权判别分析是处理这类数据的有效模型。

一:地理 加权回归下的描述性统计学

1.R语言操作简单回顾

2.局部加权的基本原理

3.带宽与核函数选择

4.局部加权的均值,标准差和相关系数

5.分位数及基于分位数的稳健估计

二:地理 加权 成分分析

1.普通的主成分分析,因子载荷与因子得分分析

2.主成分个数的选择,碎石图

3.地理加权的主成分分析

4.主成分的空间载荷

5.空间主导因子分析

三:地理加权回归

1.线性回归:高斯-马尔科夫假设

2.地理加权回归:基本方法与稳健方法,异常值的检验

3.带宽选择:修正的赤池信息法

4.系数检验:F1,F2,F3检验

5.空间稳定性检验:蒙特卡洛方法

6.共线性与变量选择:地理加权回归中的岭回归与Lasso回归

7.时空地理加权回归:GTWR

8.QGIS中的地理加权回归

四:高级回归与回归之外

1.多尺度地理加权回归:可变带宽的选择

2.异方差模型

3.广义地理加权回归:链接函数,泊松回归与二项式回归

4.空间权重矩阵与半参数地理加权回归

5.分位数回归与地理加权分位数回归

6.判别分析与地理加权判别分析

相关推荐
zhangfeng11333 小时前
数据分析 医学分析中线性回归、Cox回归、Logistic回归的定义和区别,原理和公式,适用场景
数据分析·回归·线性回归
生信大杂烩5 小时前
空间转录组分析新工具 | MEcell:自适应微环境感知建模,精准解析细胞身份!
算法·数据分析
AC赳赳老秦5 小时前
Shell 脚本批量生成:DeepSeek 辅助编写服务器运维自动化指令
运维·服务器·前端·vue.js·数据分析·自动化·deepseek
电商API_180079052479 小时前
B站视频列表与详情数据API调用完全指南
大数据·人工智能·爬虫·数据分析
jiaozi_zzq11 小时前
中专大数据专业学生如何规划证书考取与职业发展路径
大数据·职场和发展·数据分析·证书
醉卧考场君莫笑11 小时前
PowerBI(上)
信息可视化·数据分析·powerbi
沐墨染12 小时前
大型数据分析组件前端实践:多维度检索与实时交互设计
前端·elementui·数据挖掘·数据分析·vue·交互
Zoey的笔记本1 天前
金融行业数据可视化平台:破解数据割裂与决策迟滞的系统性方案
大数据·信息可视化·数据分析
Illusionna.1 天前
C 语言实现独立样本 t 检验和配对样本 t 检验
c语言·编程·统计·统计学·t-test·独立样本t检验·配对样本t检验