QAnything-1.3.0,支持纯python笔记本运行,支持混合检索

QAnything 1.3.0 更新了,这次带来两个主要功能,一个是纯python的安装,另一个是混合检索。更多详情见:

github.com/netease-you...

纯python安装

我们刚发布qanything开源的时候,希望用户可以用这个代码来直接在生产环境中部署使用,为了性能,它引入了很多第三方的库和服务,比如milvus,mysql,tritonserver,elasticsearch等。这些服务本身也非常庞大复杂,我们做了docker镜像和dockerfiles,试图将一些依赖打包起来,用户只要拉下来就可以用。但是还是有很多人遇到麻烦。比如不能在mac等笔记本上运行。

所以这次,这次我们发布了一个纯python的轻量级的版本,可以在mac等笔记本上跑起来,可以不依赖gpu。安装过程极其简单:

第一步:拉代码到本地

bash 复制代码
git clone https://github.com/netease-youdao/QAnything

如果是国内的访问不了github的,可以用gitee,我们已经同步了代码。

bash 复制代码
git clone https://gitee.com/netease-youdao/QAnything.git

第二步:安装

首先需要将代码分支切换到develop_for_v1.3.1的版本(因为这个版本还在开发中),然后执行安装:

bash 复制代码
cd QAnythinggit checkout develop_for_v1.3.1pip install -e . 

在这一步,系统会自动检测所有依赖的东西,包括vllm,transformer,pytorch等库。为了提高国内用户的下载速度,里面大部分的源都已经针对国内环境做了优化。

注意,如果是Mac下,需要先安装xcode(在mac app store上可以找到),因为它依赖了lamma.cpp,需要编译一下。

第三步:使用

为了方便用户使用,我们在scripts下面放了针对多个机器环境配置的一键启动的脚本:

bash 复制代码
ls scripts/
base_run.sh                                    run_for_4B_in_M1_mac.sh
gpu_capabilities.json                          run_for_7B_in_Linux_or_WSL.sh
list_files.py                                  run_for_7B_in_M1_mac.shlocal_chat_qa.py                               run_for_openai_api_in_M1_mac.sh
multi_local_chat_qa.py                         run_for_openai_api_with_cpu_in_Linux_or_WSL.sh
multi_upload_files.py                          run_for_openai_api_with_gpu_in_Linux_or_WSL.sh
mysql_statics.py                               stream_chat.py
new_knowledge_base.py                          upload_files.py
nvidia_gpus_compute_capability.py              weixiaobao.jpg
run_for_3B_in_Linux_or_WSL.sh

以笔者的电脑为例(mac m1),我可以选择用:

scripts/run_for_openai_api_in_M1_mac.sh

这个脚本使用了本地的embedding/rerank/ocr,但是得配置一下openai的接口。这个需要大家找一下,有很多代理openai的接口,可以配置baseurl和key。

假设我们已经配置好了,就可以通过这个脚本(我隐去了里面的url和key,用*替代)启动qanything了:

yaml 复制代码
(base) mac:QAnything linhui$ sh scripts/run_for_openai_api_in_M1_mac.sh
Xcode 已正确安装在路径:/Applications/Xcode.app/Contents/Developer
即将启动后端服务,启动成功后请复制[http://127.0.0.1:8777/qanything/]到浏览器进行测试。
运行qanything-server的命令是:
python3 -m qanything_kernel.qanything_server.sanic_api --host 127.0.0.1 --port 8777 --model_size 7B  --use_openai_api --openai_api_base https://api.openai****.org/v1 --openai_api_key sk-AM3*************BHl --openai_api_model_name gpt-3.5-turbo-1106 --openai_api_context_length 4096 --workers 4
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
llama_cpp_python 0.2.57 已经安装。
2024-04-08 10:03:13,141 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:13,141 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:13,176 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
use_cpu: False
use_openai_api: True
[2024-04-08 10:03:14 +0800] [20092] [INFO] 
  ┌─────────────────────────────────────────────────────────────────────────────┐
  │                                Sanic v23.6.0                                │
  │                      Goin' Fast @ http://127.0.0.1:8777                     │
  ├───────────────────────┬─────────────────────────────────────────────────────┤
  │                       │     mode: production, w/ 4 workers                  │
  │     ▄███ █████ ██     │   server: sanic, HTTP/1.1                           │
  │    ██                 │   python: 3.10.9                                    │
  │     ▀███████ ███▄     │ platform: macOS-13.3.1-arm64-arm-64bit              │
  │                 ██    │ packages: sanic-routing==23.12.0, sanic-ext==23.6.0 │
  │    ████ ████████▀     │                                                     │
  │                       │                                                     │
  │ Build Fast. Run Fast. │                                                     │
  └───────────────────────┴─────────────────────────────────────────────────────┘

[2024-04-08 10:03:14 +0800] [20092] [WARNING] Sanic is running in PRODUCTION mode. Consider using '--debug' or '--dev' while actively developing your application.
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
llama_cpp_python 0.2.57 已经安装。
2024-04-08 10:03:17,231 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:17,231 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:17,264 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
use_cpu: False
use_openai_api: True
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
LOCAL DATA PATH: /Users/linhui/workspace/QAnything/QANY_DB/content
LOCAL_RERANK_REPO: maidalun/bce-reranker-base_v1
LOCAL_EMBED_REPO: maidalun/bce-embedding-base_v1
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
<Logger debug_logger (INFO)> <Logger qa_logger (INFO)>
llama_cpp_python 0.2.57 已经安装。
llama_cpp_python 0.2.57 已经安装。
llama_cpp_python 0.2.57 已经安装。
llama_cpp_python 0.2.57 已经安装。
2024-04-08 10:03:21,898 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:21,898 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:21,898 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:21,898 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:21,947 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
2024-04-08 10:03:21,951 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
2024-04-08 10:03:22,335 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:22,336 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:22,369 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
2024-04-08 10:03:22,431 - modelscope - INFO - PyTorch version 2.2.1 Found.
2024-04-08 10:03:22,432 - modelscope - INFO - Loading ast index from /Users/linhui/.cache/modelscope/ast_indexer
2024-04-08 10:03:22,466 - modelscope - INFO - Loading done! Current index file version is 1.13.0, with md5 4e15c4f2db78c84e863a425f008f4eac and a total number of 972 components indexed
use_cpu: False
use_openai_api: True
use_cpu: False
use_openai_api: True
[2024-04-08 10:03:22 +0800] [20102] [INFO] Sanic Extensions:
[2024-04-08 10:03:22 +0800] [20102] [INFO]   > injection [0 dependencies; 0 constants]
[2024-04-08 10:03:22 +0800] [20102] [INFO]   > openapi [http://127.0.0.1:8777/docs]
[2024-04-08 10:03:22 +0800] [20102] [INFO]   > http 
[2024-04-08 10:03:22 +0800] [20102] [INFO]   > templating [jinja2==3.1.2]
[2024-04-08 10:03:22 +0800] [20099] [INFO] Sanic Extensions:
[2024-04-08 10:03:22 +0800] [20099] [INFO]   > injection [0 dependencies; 0 constants]
[2024-04-08 10:03:22 +0800] [20099] [INFO]   > openapi [http://127.0.0.1:8777/docs]
[2024-04-08 10:03:22 +0800] [20099] [INFO]   > http 
[2024-04-08 10:03:22 +0800] [20099] [INFO]   > templating [jinja2==3.1.2]
use_cpu: False
use_openai_api: True
[2024-04-08 10:03:23 +0800] [20101] [INFO] Sanic Extensions:
[2024-04-08 10:03:23 +0800] [20101] [INFO]   > injection [0 dependencies; 0 constants]
[2024-04-08 10:03:23 +0800] [20101] [INFO]   > openapi [http://127.0.0.1:8777/docs]
[2024-04-08 10:03:23 +0800] [20101] [INFO]   > http 
[2024-04-08 10:03:23 +0800] [20101] [INFO]   > templating [jinja2==3.1.2]
use_cpu: False
use_openai_api: True
[2024-04-08 10:03:23 +0800] [20100] [INFO] Sanic Extensions:
[2024-04-08 10:03:23 +0800] [20100] [INFO]   > injection [0 dependencies; 0 constants]
[2024-04-08 10:03:23 +0800] [20100] [INFO]   > openapi [http://127.0.0.1:8777/docs]
[2024-04-08 10:03:23 +0800] [20100] [INFO]   > http 
[2024-04-08 10:03:23 +0800] [20100] [INFO]   > templating [jinja2==3.1.2]

然后就可以通过浏览器访问:http://127.0.0.1:8777/qanything/#/home 来体验qanything了。

当然,也可以使用本地的大模型,qanything已经通过lamma.cpp以及vllm 集成了多个本地大模型。在mac的笔记本上是千问7b和4b的int4的量化版本,我测试了感觉效果一般。在linux + nvidia显卡上用的是千问7b的int8的版本,效果还行。

目前python版(develop_v1.3.1分支)相比docker版本(master 分支)在易用性上有优势,但是一些性能相关的东西还没有迁移过来,比如docker版本支持tensortllm,推理性能更高一些。docker版本里面的ocr解析模型质量也略好点。

混合检索

这次我们同时支持了混合检索 BM25 + embedding。****

embedding语义检索

qanything自带了bcembedding的模型,可以做语义检索,大部分情况下已经能取得比较好的效果。

BM25关键字搜索

在实际使用中,我们发现有一些特殊情况用关键字搜索效果会更好,包括:

  1. 特定名字的搜索。比如iphone 15。如果用向量检索可能会把所有的iphone都给检索出来了,而我只要iphone 15这个型号的。

  2. 罕见的短词、缩略词搜索。这个因为训练语料中见的很少,可能会导致语义理解发生偏差,检索不出来。

  3. 一些id的检索。需要做精确匹配的。

BM25算法的解释

BM25算法是比较经典的关键字搜索算法,它是由tf/idf算法改进而来的。2016年Elasticsearch 5.0的默认检索器从tf/idf改成了bm25算法。这里简单科普下这个算法:

tf/idf算法

搜索query和doc的匹配度的score计算公式为:

score(D, T) = tf * idf = termFrequency(D, T) * log(N / docFrequency(T))

其中 termFrequency 是词频,代表query的词在某个文档中出现的次数,出现的越多次就越相关。idf代表这个词的区分度,如果一个词(比如"的"、"地"、"得"之类副词)在很多文档都出现,这种词就不太重要。N是文档总数,docFrequency代表这个词在多少个文档中出现。其中Log是为了平滑,否则细微的docFrequency的变化会导致score的剧烈波动。

BM25算法

bm25算法在tf/idf算法上做了几点改进:

1.词频贡献有个上限。比如一个文档出现了太多次query里面的某个词了,这个贡献不应一直累加,而是有个上限。所以它用tf/(tf+k) 来做抑制。这带来的一个好处是,算法会青睐不同query的词同时在文档中出现的情况。比如,搜索 cat dog,如果cat 和 dog都在文档中出现1次,它的分值会比只有dog在文档中出现2次的分值要高。如果k=1的话,一个词出现两次的score=1/2,两个词出现1次的socre = 2/3。

  1. 惩罚长文档的影响力。如果文档词比较多,那么命中关键字的可能性当然就大很多。把 |D|/(avg doc length)作为k,可以达到这个目的。

  2. 词的重要性。这个还是按idf的那套策略来算。这里用的是log (N-DF+.5)/(DF+.5),这是由学术理论算出来的最优值(在一些简化的假设条件下)。

重排序(rerank)

两路检索出来的的chunks要按照重要性做重新排序。重排序也有多种算法,比如基于倒数的融合排序:

不过在我们系统中,我们直接依赖BCE rerank做重排序,在各种场景下表现良好。

混合检索当前还只在docker版本(master 分支) 上支持。

qanything 1.3.0的更新

新特性

  1. 支持在纯Python环境中安装,可以在MAC上运行,也可以在纯CPU机器上运行。详见:纯Python环境安装教程
  2. 支持混合检索(BM25+Embedding)。
  3. 当系统命令缺失时,下载提示更清晰。
  4. 自动检测显卡的计算能力和内存大小,并根据情况自动调整默认启动参数,以提供用户最佳体验,并给予相关提示。
  5. 更新前置条件,最低支持 GTX1050Ti,支持更多显卡型号。
  6. 提示用户代码仓库是否为最新,仅适用于主分支。
  7. 优化启动流程,自动查询相关日志并在前端显示错误消息,避免连续输出 'waiting for coffee'。
  8. 在前端添加英文版本。
  9. 修复已知的错误,优化用户体验。(在 Milvus 插入失败时,请记得删除根目录下的 "volumes" 文件夹。)

变更内容

  • 修复启动脚本已知问题。由 @xixihahaliu 提交于 #92

  • 修复已知问题,优化用户体验。由 @xixihahaliu 提交于 #102

  • Milvus增加用户名、密码、数据库名支持。由 @cklogic 提交于 #97

  • feat_#114: 为 NVIDIA GeForce RTX 4090D 添加 GPU 兼容性检查。由 @johnymoo 提交于 #115

  • 修复:由 @pinkcxy 提交的轮次控制问题。#131

  • 问题修复:调用api/api/local_doc_qa/local_doc_chat返回数据为None。由 @leehom0123 提交于 #137

  • 优化解析 csv 和 xlsx 文件的逻辑。此外,现在支持离线运行 Docker 镜像。由 @xixihahaliu 提交于 #139

  • 混合搜索。由 @shenlei1020 提交于 #194

QAnything开源代码地址:

github.com/netease-you...

更多信息见:

  1. 纯python的安装说明:github.com/netease-you...

  2. bce embedding 和 rerank: github.com/netease-you...

  3. bm25算法的解释:kmwllc.com/index.php/2...

相关推荐
2401_88304108几秒前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
pianmian16 分钟前
python数据结构基础(7)
数据结构·算法
AI极客菌1 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭1 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^1 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246662 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k2 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫2 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班2 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型
数据猎手小k2 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型