IDEA研究院发布Rex-Omni:3B参数MLLM重塑目标检测,零样本性能超越DINO

把目标检测变成"下一个点预测",用2200万数据+强化学习解决行业难题

目标检测技术正在迎来一场范式革命!传统方法如YOLO、DETR依赖复杂的坐标回归,而IDEA(粤港澳大湾区数字经济研究院)研究院的最新研究Rex-Omni通过巧妙的任务重构,将目标检测转化为更符合大语言模型思维的"下一个点预测"任务,在零样本设置下实现了对传统强手的超越。

论文标题:

Detect Anything via Next Point Prediction

论文 链接

arxiv.org/abs/2510.12...

代码仓库

github.com/idea-resear...

突破传统:从坐标回归到点预测

Rex-Omni的核心创新在于彻底改变了目标检测的问题定义。研究团队将图像坐标空间量化为1000个离散值,每个值对应一个专用token。这样,一个边界框只需4个token(x0, y0, x1, y1)即可表示,完美适配语言模型的生成范式。

这种设计带来双重优势:

  • 降低学习难度: 连续的坐标回归简化为有限集合的分类问题
  • 提升推理效率: 相比将坐标拆解为单个数字的方法,token使用效率大幅提升

三大支柱:架构创新的坚实基础

Rex-Omni的成功建立在三大核心设计之上:

任务范式创新: 基于Qwen2.5-VL-3B架构,复用词汇表最后1000个token作为坐标专用token,无需大幅改动模型结构。

数据引擎支撑:团队构建自动化数据流水线,整合公共数据集与自产数据,最终形成2200万样本的训练集,覆盖定位、指代、指向等多种任务。

训练流程优化: 采用两阶段训练策略------先通过监督微调打下基础,再引入GRPO强化学习方法,通过几何感知奖励函数精细调整模型行为。

性能表现:零样本检测的新标杆

在权威基准测试中,Rex-Omni展现惊人实力:

COCO数据集: 零样本设置下,IoU阈值为0.5时,性能不仅超越之前最强MLLM SEED1.5-VL,甚至超过了为COCO专门训练的传统检测器DINO-R50。

LVIS长尾检测: 在更具挑战性的长尾任务中,mIoU指标达到46.9,证明其优秀泛化能力。

密集小目标检测: 在Dense200数据集上取得78.4的F1@0.5分数,有效解决了MLLM在密集小目标上的传统弱点。

多任务能力:超越传统检测的边界

得益于语言模型的底层架构,Rex-Omni展现出全面的视觉感知能力:

  • 指代性物体检测
  • 视觉提示理解
  • GUI界面定位
  • OCR文字识别
  • 关键点检测

这种统一的方法为开发通用视觉感知系统开辟了新路径。

技术启示与未来展望

Rex-Omni的突破表明,通过巧妙的任务重构,MLLM不仅能够"理解"图像内容,更能"精准定位"视觉元素。这种将目标检测统一到生成框架下的思路,为多模态大模型在视觉任务中的应用提供了全新范式。

该研究已全面开源,包括论文、代码和演示,为社区进一步探索提供了坚实基础。

相关推荐
NAGNIP6 小时前
万字长文!回归模型最全讲解!
算法·面试
知乎的哥廷根数学学派6 小时前
面向可信机械故障诊断的自适应置信度惩罚深度校准算法(Pytorch)
人工智能·pytorch·python·深度学习·算法·机器学习·矩阵
强盛小灵通专卖员7 小时前
基于深度学习的山体滑坡检测科研辅导:从论文实验到系统落地的完整思路
人工智能·深度学习·sci·小论文·山体滑坡
Hcoco_me7 小时前
大模型面试题61:Flash Attention中online softmax(在线softmax)的实现方式
人工智能·深度学习·自然语言处理·transformer·vllm
哥布林学者7 小时前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (七)双向 RNN 与深层 RNN
深度学习·ai
666HZ6668 小时前
数据结构2.0 线性表
c语言·数据结构·算法
极海拾贝8 小时前
GeoScene解决方案中心正式上线!
大数据·人工智能·深度学习·arcgis·信息可视化·语言模型·解决方案
知乎的哥廷根数学学派8 小时前
基于生成对抗U-Net混合架构的隧道衬砌缺陷地质雷达数据智能反演与成像方法(以模拟信号为例,Pytorch)
开发语言·人工智能·pytorch·python·深度学习·机器学习
实心儿儿8 小时前
Linux —— 基础开发工具5
linux·运维·算法
知乎的哥廷根数学学派9 小时前
基于自适应多尺度小波核编码与注意力增强的脉冲神经网络机械故障诊断(Pytorch)
人工智能·pytorch·python·深度学习·神经网络·机器学习