十六、计算机视觉-Scharr算子 和 Laplacian算子

文章目录


一、Scharr算子

Scharr算子和Sobel算子原理都一样,它是由Scharr在2002年提出的一种改进的Sobel算子。Scharr算子的优点在于它相对于Sobel算子有更好的旋转不变性和更小的边缘响应误差。

我们看下Scharr算子的水平卷积核:

可以看到其卷积核中的值比Sobel算子的对应值大,这使得Scharr算子在捕捉图像边缘细节时更加敏感。因为上节讲过原理了 这里就不在重复了,我们看下具体他是怎么实现的。

python 复制代码
import cv2
img = cv2.imread('./img/image.jpg',cv2.IMREAD_GRAYSCALE)
# 计算Scharr算子的水平和垂直梯度
scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)  # x方向梯度
scharrx = cv2.convertScaleAbs(scharrx)

scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)  # y方向梯度
scharry = cv2.convertScaleAbs(scharry)

# 结合水平和垂直梯度
scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)  # xy方向梯度

# 显示结果
cv2.imshow('Scharr Gradient', scharrxy)
cv2.waitKey(0)
cv2.destroyAllWindows()

参数就不讲了 可以参考sobel算子的参数

看下结果:

二、Laplacian算子

Laplacian 算子和之前讲的sobel和Scharr有些不同,我们看下Laplacian算子的卷积核

python 复制代码
  0   1   0
  1  -4   1
  0   1   0

我们看下它的操作流程:

首先,将3x3的卷积核以上面-4的位置为中心点依次对图像中的每个像素点进行卷积操作,这个和前面一样,将卷积结果作为图像的每个像素点的新像素值。

对于卷积结果,若像素值较大,则表示该像素点周围的灰度值变化较大,可能是图像中的边缘或轮廓。

那他的计算公式是什么?比如我们卷积核覆盖的图像的9个像素点如下

那p5的新值=(p2 + p4 + p6 + p8) - 4 * p5

●p2 p4 p6 p8 分别代表了卷积核中的四个相邻像素点的值。

●p5 是卷积核覆盖的中心像素点的值。

算式中的 4×p5 表示了中心像素点的值被乘以4,这是因为在Laplacian算子的卷积核中,中心像素点的系数是-4,因此需要将其乘以4进行加权。

最终的 p5 表示了中心像素点的新值,它等于周围相邻像素点的值之和减去中心像素点的值的四倍。这一过程会使图像中的边缘或轮廓区域得到突出,因为这些区域的像素值变化较大,而Laplacian算子会将这种变化放大。

我们进一步分析:

当p2 p4 p6 p8较大时也就是他的亮度(灰度)远大于中心点,也就是周围和中心点差距较大时,两边一减那我们新的p5的值是不是就是变小了。

而当当p2 p4 p6 p8较小时,同样和中心点比较差距较大,那一减 得到的事负数 然后绝对值 是不是比原来的值大了。

所以,它本身中心为最高峰,向两边依次减小。当周围和高于中心时,减弱中心像素;当周围和低于中心时,增强中心像素,一般用于图像的锐化。由于Laplacian算子突出了图像中的边缘和轮廓特征,因此常用于图像的锐化处理。通过对图像应用Laplacian算子,可以增强图像中的边缘和轮廓,使它们更加清晰和突出。

我们看下具体的实现代码:

python 复制代码
import cv2
img = cv2.imread('./img/image.jpg',cv2.IMREAD_GRAYSCALE)
Laplacian = cv2.Laplacian(img,cv2.CV_64F)
Laplacian = cv2.convertScaleAbs(Laplacian)
cv2.imshow("original",img)
cv2.imshow("Laplacian",Laplacian)
cv2.waitKey()
cv2.destroyAllWindows()

看下结果:

相关推荐
会编程的吕洞宾1 分钟前
智能体学习记录一
人工智能·学习
Robert--cao2 分钟前
人机交互(如 VR 手柄追踪、光标移动、手势识别)的滤波算法
人工智能·算法·人机交互·vr·滤波器
Z3r4y2 分钟前
【AI】2025 0x401新生交流赛 wp
人工智能·ai·ctf·wp
智驱力人工智能3 分钟前
高速公路无人机车流密度监测 构建动态交通新维度 基于YOLOv8的无人机车辆检测算法 边缘计算无人机交通监测设备
人工智能·安全·yolo·目标检测·视觉检测·无人机·边缘计算
Katecat996634 分钟前
基于YOLOv8-Slimneck-WFU模型的苹果目标检测实现
人工智能·yolo·目标检测
Piar1231sdafa4 分钟前
FCOS模型优化实战:基于R50-DCN-Caffe的FPN_GN检测头中心点回归与GIoU损失函数实现
人工智能·回归·caffe
世岩清上4 分钟前
智能算法与边缘计算融合:驱动下一代实时决策系统的技术范式革新
人工智能·边缘计算
YIFAN.WANG8 分钟前
AI中的优化7-有约束非线性规划
人工智能·机器学习·支持向量机
咚咚王者2 小时前
人工智能之数学基础 线性代数:第三章 特征值与特征向量
人工智能·线性代数·机器学习
g***B7384 小时前
Java 工程复杂性的真正来源:从语言设计到现代架构的全链路解析
java·人工智能·架构