吴恩达2022机器学习专项课程(一) 5.5 特征缩放1 & 5.6 特征缩放2

问题预览/关键词

  1. 什么是特征缩放?作用是什么?
  2. 特征尺度和参数w权重的关系是?
  3. 算法为什么要调节w权重?
  4. 不进行特征缩放对梯度下降的影响?
  5. 有特征缩放对梯度下降的影响?
  6. 实现特征缩放的三种方法是?
  7. 如何实现最大值缩放?
  8. 如何实现均值归一化?
  9. 如何实现Z-score标准化?
  10. 判断缩放成功的标准是?
  11. 什么情况需要重新缩放?

笔记

1.特征缩放

将所有特征调整到同一尺度,加速梯度下降收敛,参数权重均衡,模型无偏向特征,提高准确性。

2.特征尺度和w权重的关系

当特征x取值范围大,算法会将对应w的权重(取值范围)调小,反之亦然。

3.算法调节w权重

保证模型里的每个特征影响力均衡,尽量达到特征缩放的效果。

4.没有特征缩放

特征差异过大导致w的权重差异大,等高线图呈椭圆,梯度下降反复横跳,收敛变慢,影响性能。

5.进行特征缩放

特征差异小,尺度一致,w参数的权重尺度一致,梯度下降更快收敛。

6.特征缩放的三种方法

最大值缩放,均值归一化,Z-score标准化。

7.最大值缩放

输入特征的最小值和最大值分别除以最大值,重新计算特征取值范围。

8.均值归一化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:特征范围的最大值减去最小值。

9.Z-score标准化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:计算该列表里每个特征的标准差。

10.缩放成功标准

通常是 -1 到 +1 附近,但 -3 到 +3 或 -0.3 到 +0.3 也可接受。

11.重新缩放

范围过大或过小,需要重新缩放。

总结

在每个特征的差异较大的情况下,如果没有特征缩放,对应每个w参数的差异也很大,导致梯度下降的收敛速度变慢,影响模型的性能。如果使用特征缩放,每个w参数的尺度也一致,能使梯度下降尽快收敛。特征缩放有三种方法:最大值缩放,均值归一化,Z-score标准化。如果特征缩放后的范围过大或过小,我们都要重新缩放。如果缩放后的范围适度,则可以使用这个范围。

相关推荐
臭东西的学习笔记6 分钟前
论文学习——机器学习引导的蛋白质工程
人工智能·学习·机器学习
大王小生30 分钟前
说说CSV文件和C#解析csv文件的几种方式
人工智能·c#·csv·csvhelper·csvreader
m0_4626052237 分钟前
第G3周:CGAN入门|生成手势图像
人工智能
bubiyoushang8881 小时前
基于LSTM神经网络的短期风速预测实现方案
人工智能·神经网络·lstm
中烟创新1 小时前
烟草专卖文书生成智能体与法规案卷评查智能体获评“年度技术最佳实践奖”
人工智能
得一录1 小时前
大模型中的多模态知识
人工智能·aigc
Github掘金计划1 小时前
Claude Work 开源平替来了:让 AI 代理从“终端命令“变成“产品体验“
人工智能·开源
ghgxm5201 小时前
Fastapi_00_学习方向 ——无编程基础如何用AI实现APP生成
人工智能·学习·fastapi
余俊晖2 小时前
3秒实现语音克隆的Qwen3-TTS的Qwen-TTS-Tokenizer和方法架构概览
人工智能·语音识别
森屿~~2 小时前
AI 手势识别系统:踩坑与实现全记录 (PyTorch + MediaPipe)
人工智能·pytorch·python