吴恩达2022机器学习专项课程(一) 5.5 特征缩放1 & 5.6 特征缩放2

问题预览/关键词

  1. 什么是特征缩放?作用是什么?
  2. 特征尺度和参数w权重的关系是?
  3. 算法为什么要调节w权重?
  4. 不进行特征缩放对梯度下降的影响?
  5. 有特征缩放对梯度下降的影响?
  6. 实现特征缩放的三种方法是?
  7. 如何实现最大值缩放?
  8. 如何实现均值归一化?
  9. 如何实现Z-score标准化?
  10. 判断缩放成功的标准是?
  11. 什么情况需要重新缩放?

笔记

1.特征缩放

将所有特征调整到同一尺度,加速梯度下降收敛,参数权重均衡,模型无偏向特征,提高准确性。

2.特征尺度和w权重的关系

当特征x取值范围大,算法会将对应w的权重(取值范围)调小,反之亦然。

3.算法调节w权重

保证模型里的每个特征影响力均衡,尽量达到特征缩放的效果。

4.没有特征缩放

特征差异过大导致w的权重差异大,等高线图呈椭圆,梯度下降反复横跳,收敛变慢,影响性能。

5.进行特征缩放

特征差异小,尺度一致,w参数的权重尺度一致,梯度下降更快收敛。

6.特征缩放的三种方法

最大值缩放,均值归一化,Z-score标准化。

7.最大值缩放

输入特征的最小值和最大值分别除以最大值,重新计算特征取值范围。

8.均值归一化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:特征范围的最大值减去最小值。

9.Z-score标准化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:计算该列表里每个特征的标准差。

10.缩放成功标准

通常是 -1 到 +1 附近,但 -3 到 +3 或 -0.3 到 +0.3 也可接受。

11.重新缩放

范围过大或过小,需要重新缩放。

总结

在每个特征的差异较大的情况下,如果没有特征缩放,对应每个w参数的差异也很大,导致梯度下降的收敛速度变慢,影响模型的性能。如果使用特征缩放,每个w参数的尺度也一致,能使梯度下降尽快收敛。特征缩放有三种方法:最大值缩放,均值归一化,Z-score标准化。如果特征缩放后的范围过大或过小,我们都要重新缩放。如果缩放后的范围适度,则可以使用这个范围。

相关推荐
Humbunklung4 分钟前
从数据层面减少过拟合现象
机器学习
AI大模型系统化学习6 分钟前
Excel MCP: 自动读取、提炼、分析Excel数据并生成可视化图表和分析报告
人工智能·ai·大模型·ai大模型·大模型学习·大模型入门·mcp
lboyj38 分钟前
填孔即可靠:猎板PCB如何用树脂塞孔重构高速电路设计规则
人工智能·重构
Blossom.1181 小时前
从虚拟现实到混合现实:沉浸式体验的未来之路
人工智能·目标检测·机器学习·计算机视觉·语音识别·vr·mr
赵青临的辉1 小时前
简单神经网络(ANN)实现:从零开始构建第一个模型
人工智能·深度学习·神经网络
KALC1 小时前
告别“知识孤岛”:RAG赋能网络安全运营
人工智能·网络安全
2303_Alpha1 小时前
深度学习入门:深度学习(完结)
人工智能·笔记·python·深度学习·神经网络·机器学习
白白白飘2 小时前
pytorch 15.1 学习率调度基本概念与手动实现方法
人工智能·pytorch·学习
深度学习入门2 小时前
机器学习,深度学习,神经网络,深度神经网络之间有何区别?
人工智能·python·深度学习·神经网络·机器学习·机器学习入门·深度学习算法
张彦峰ZYF3 小时前
走出 Demo,走向现实:DeepSeek-VL 的多模态工程路线图
人工智能