吴恩达2022机器学习专项课程(一) 5.5 特征缩放1 & 5.6 特征缩放2

问题预览/关键词

  1. 什么是特征缩放?作用是什么?
  2. 特征尺度和参数w权重的关系是?
  3. 算法为什么要调节w权重?
  4. 不进行特征缩放对梯度下降的影响?
  5. 有特征缩放对梯度下降的影响?
  6. 实现特征缩放的三种方法是?
  7. 如何实现最大值缩放?
  8. 如何实现均值归一化?
  9. 如何实现Z-score标准化?
  10. 判断缩放成功的标准是?
  11. 什么情况需要重新缩放?

笔记

1.特征缩放

将所有特征调整到同一尺度,加速梯度下降收敛,参数权重均衡,模型无偏向特征,提高准确性。

2.特征尺度和w权重的关系

当特征x取值范围大,算法会将对应w的权重(取值范围)调小,反之亦然。

3.算法调节w权重

保证模型里的每个特征影响力均衡,尽量达到特征缩放的效果。

4.没有特征缩放

特征差异过大导致w的权重差异大,等高线图呈椭圆,梯度下降反复横跳,收敛变慢,影响性能。

5.进行特征缩放

特征差异小,尺度一致,w参数的权重尺度一致,梯度下降更快收敛。

6.特征缩放的三种方法

最大值缩放,均值归一化,Z-score标准化。

7.最大值缩放

输入特征的最小值和最大值分别除以最大值,重新计算特征取值范围。

8.均值归一化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:特征范围的最大值减去最小值。

9.Z-score标准化

分子:某个输入特征列表里的每一个特征值减去平均值。分母:计算该列表里每个特征的标准差。

10.缩放成功标准

通常是 -1 到 +1 附近,但 -3 到 +3 或 -0.3 到 +0.3 也可接受。

11.重新缩放

范围过大或过小,需要重新缩放。

总结

在每个特征的差异较大的情况下,如果没有特征缩放,对应每个w参数的差异也很大,导致梯度下降的收敛速度变慢,影响模型的性能。如果使用特征缩放,每个w参数的尺度也一致,能使梯度下降尽快收敛。特征缩放有三种方法:最大值缩放,均值归一化,Z-score标准化。如果特征缩放后的范围过大或过小,我们都要重新缩放。如果缩放后的范围适度,则可以使用这个范围。

相关推荐
2501_941623322 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛2 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI2 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus2 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声2 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API2 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者3 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者3 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
YangYang9YangYan3 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
aitoolhub3 小时前
精选AI设计工具测评:创新性、易用性及行业应用
人工智能·在线设计