聊聊ChatGLM3多用户并发API调用的问题

转载请备注出处:https://www.cnblogs.com/zhiyong-ITNote

背景

目前在公司内部4张A10的GPU服务器上部署了ChatGLM3开源模型;然后部署了官方默认的web_demoapi_demo两种模式;重新设计了前端,支持H5和安卓两个客户端调用。但却发现了不能并发访问的问题。

问题现象

在安卓与H5同时调用ChatGLM的API接口(流式接口)时,其中有一个客户端的返回是正常的,而另一个客户端返回却是乱码(解码后是空数据),同时模型报错。报错内容与问题请看issue


官方回复如下:

后来我测试用多卡部署模型,比如3卡,此时可以支持3个以下的用户调用,但再多就不行了。

问题分析

由于非AI相关科班出身也不是专门做这个的,因此一下子还有点棘手;后来在智谱AI开放平台的使用指南-速率限制指南 一文中,发现其支持并发调用,只是说有并发数限制。因此我分析来说,应该是放出来的模型与开放平台上的模型有一定的区别,而这个区别就在于模型的并发能力。毕竟外部API调用时,最终还是调用模型内部的流式接口/非流式接口。也就是说,这个模型内部的接口并不支持并行计算。

从模型的内部来说,其是transformer神经网络结构,但其并发能力却没有这么简单,毕竟模型涉及到的计算量是巨大的。归根来说,还是transformer的并行计算能力。

后来找到个遇到同样情况的博文,不过和我们的部署方式还是有区别的。mosec部署chatglm2-6B 一文中分析了下其遇到的问题与解决方案,至此我大概也清楚了并发调用模型API时为什么会返回乱码(空数据)。

原因与解决策略

当并发调用时,其中模型已经处理完了一个request后,返回的tensor识别了eos_token,模型会认为已经处理完了所有的request,因此返回空数据。

那么从这里来说的话,我暂时想到的解决策略:模型内部按batch来处理request。

这个代码不好改,应该有开源的实现和解决策略。后来我又想到了LLaMA-Factory这个微调框架,他们也是有api_demo的,应该也会遇到这样的问题,因此提了个Issue,还好最终有另外的解,见issue

LLaMA-Factory官方通过vllm实现了并发流式,暂时还没验证,简单看了下代码,理论上是冒得问题的:


转载请备注出处:https://www.cnblogs.com/zhiyong-ITNote

首发于个人公众号

相关推荐
七夜zippoe16 小时前
基于Qwen2.5-7B-Chat的本地化部署实战——从模型原理到企业级应用
vllm·ollama·qwen2.5·gradio web·企业级api
Stara05117 天前
DeepSeek-OCR私有化部署—从零构建OCR服务环境
计算机视觉·docker·ocr·transformers·vllm·deepseek·光学符号识别
破烂pan9 天前
主流 LLM 推理/部署框架指标对比
llm·模型部署·vllm
skywalk816317 天前
老显卡老cpu用vllm推理大模型失败Intel(R) Xeon(R) CPU E5-2643 v2
人工智能·pytorch·python·vllm
远上寒山21 天前
DeepSeek-OCR 论文精读与实践:用“光学上下文压缩”把长文本变成图片,再由 VLM 高效还原
ocr·vllm·文档解析·deepseek·deepseek-ocr·视觉-文本压缩
weixin_438077491 个月前
windows10安装WSL2 & ubuntu24.04中安装vLLM & vLLM中部署Qwen2.5-VL
llm·vllm·qwen2.5-vl
hu_nil1 个月前
LLMOps-第十一周作业
python·vllm
deephub1 个月前
vLLM 性能优化实战:批处理、量化与缓存配置方案
人工智能·python·大语言模型·1024程序员节·vllm
九章云极AladdinEdu1 个月前
大模型推理服务优化:vLLM的PagedAttention与连续批处理实现
vllm·kv缓存·推理优化·pagedattention·连续批处理·吞吐量对比
羊城迷鹿1 个月前
华为昇腾NPU驱动问题排查与vLLM部署踩坑记录
昇腾·npu·vllm