【vLLM 学习】Load Sharded State

vLLM 是一款专为大语言模型推理加速而设计的框架,实现了 KV 缓存内存几乎零浪费,解决了内存管理瓶颈问题。

更多 vLLM 中文文档及教程可访问 →https://vllm.hyper.ai/

*在线运行 vLLM 入门教程:零基础分步指南

源码 examples/offline_inference/load_sharded_state.py.

复制代码
# SPDX-License-Identifier: Apache-2.0
"""
Validates the loading of a model saved with the sharded_state format.
This script demonstrates how to load a model that was previously saved
using save_sharded_state.py and validates it by running inference.
Example usage:
(First need to save a sharded_state mode)

python save_sharded_state.py \
    --model /path/to/load \
    --quantization deepspeedfp \
    --tensor-parallel-size 8 \
    --output /path/to/save/sharded/modele

python load_sharded_state.py \
    --model /path/to/saved/sharded/model \
    --load-format sharded_state \
    --quantization deepspeedfp \
    --tensor-parallel-size 8 \
    --prompt "Hello, my name is" \
    --max-tokens 50
"""

import dataclasses

from vllm import LLM, EngineArgs, SamplingParams
from vllm.utils import FlexibleArgumentParser


def parse_args():
    parser = FlexibleArgumentParser()
    # Add engine arguments
    EngineArgs.add_cli_args(parser)

    # Override default load_format for clarity
    parser.set_defaults(load_format="sharded_state")

    # Add validation arguments
    parser.add_argument("--prompt",
                        type=str,
                        default="Hello, world!",
                        help="Prompt for validation")
    parser.add_argument("--max-tokens",
                        type=int,
                        default=100,
                        help="Maximum number of tokens to generate")
    parser.add_argument("--temperature",
                        type=float,
                        default=0.7,
                        help="Sampling temperature")
    parser.add_argument("--top-p",
                        type=float,
                        default=1.0,
                        help="Top-p sampling parameter")

    return parser.parse_args()


def main():
    args = parse_args()
    engine_args = EngineArgs.from_cli_args(args)

    print(f"Loading model from {engine_args.model} "
          f"using format {engine_args.load_format}")
    print(f"Tensor parallel size: {engine_args.tensor_parallel_size}")

    # Load the model using engine args
    llm = LLM(**dataclasses.asdict(engine_args))

    # Prepare sampling parameters
    sampling_params = SamplingParams(
        temperature=args.temperature,
        top_p=args.top_p,
        max_tokens=args.max_tokens,
    )

    print("\nRunning inference:")
    print(f"Prompt: {args.prompt}")

    # Generate completion
    outputs = llm.generate(args.prompt, sampling_params)

    # Display generated text
    print("\nGenerated outputs:")
    for output in outputs:
        generated_text = output.outputs[0].text
        print("-" * 50)
        print(f"Full output: {args.prompt}{generated_text}")
        print("-" * 50)


if __name__ == "__main__":
    main()
相关推荐
缘友一世12 小时前
张量并行和流水线并行原理深入理解与思考
学习·llm·pp·tp
CoderJia程序员甲18 小时前
GitHub 热榜项目 - 日榜(2026-01-30)
开源·大模型·llm·github·ai教程
缘友一世20 小时前
大模型分布式推理:Ray 与 vLLM/Transformers 的协同架构深度解析
分布式·架构·transformer·ray·vllm
亚里随笔20 小时前
MegaFlow:面向Agent时代的大规模分布式编排系统
人工智能·分布式·llm·rl·agentic
大熊猫侯佩1 天前
赛博深渊(上):用 Apple Foundation Models 提炼“禁忌知识”的求生指南
llm·swiftui·大语言模型·foundationmodel·apple ai·apple 人工智能·summarize
taoqick1 天前
vLLM中的repetition_penalty、frequency_penalty和presence_penalty
vllm
小爷毛毛(卓寿杰)2 天前
SlideFlow: AI 驱动的 PPT 自动化生成引擎
人工智能·自动化·powerpoint·大语言模型
Jack_abu2 天前
谷歌开源翻译模型 TranslateGemma 深度解析与本地部署实践
llm·机器翻译·ollama·开源翻译模型
CoderJia程序员甲2 天前
GitHub 热榜项目 - 日榜(2026-01-29)
git·ai·开源·llm·github
Wilber的技术分享2 天前
【大模型面试八股 1】Transformer注意力机制:MHA、MQA、GQA、MLA原理解析与对比
人工智能·深度学习·transformer·大语言模型·大模型面试题·面试八股