比较:
- labelimg完成的是对目标物的框选,最终完成的任务是目标检测。
- labelme完成的是对目标物的分割,可以理解为更精细化的目标检测。
下面梳理一下安装labelme的过程:
step1: 打开anaconda prompt,创建虚拟环境
输入conda create -n labelme python=3.9
step2 :检查是否虚拟环境是否建立 conda env list
如图,已经安装好了
step3 :激活环境 conda activate labelme
使用labelme时需要安装多个库,依次进行
conda install pyqt
conda install pillow
pip install labelme
step4: 检查是否成功安装labelme
conda list
step5:和使用labelme类似,安装成功后先激活环境,再调用labelme即可。界面与labelimg类似。
区别是,labelme没有自动调整输出格式的功能,保存的是一个.json文件,后续需创建一个.json->.txt的python文件。这里借鉴了其他博主的方法(@csdn Jack_小明)
原文链接:blog.csdn.net/Wu_GuiMing/...
ini
import json
import os
name_to_id = {'cat': 0, 'dog': 1} #此处需要根据你自己的数据集类型进行修改
def convert(img_size, box):
dw = 1. / (img_size[0])
dh = 1. / (img_size[1])
x = (box[0] + box[2]) / 2.0
y = (box[1] + box[3]) / 2.0
w = abs(box[2] - box[0])
h = abs(box[3] - box[1])
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return (x, y, w, h)
def decode_json(json_floder_path, txt_outer_path, json_name):
txt_name = txt_outer_path + json_name[:-5] + '.txt'
with open(txt_name, 'w') as f:
json_path = os.path.join(json_floder_path, json_name) # os路径融合
data = json.load(open(json_path, 'r', encoding='gb2312', errors='ignore'))
img_w = data['imageWidth'] # 图片的高
img_h = data['imageHeight'] # 图片的宽
isshape_type = data['shapes'][0]['shape_type']
print(isshape_type)
for i in data['shapes']:
label_name = i['label'] # 得到json中你标记的类名
if (i['shape_type'] == 'polygon'): # 数据类型为多边形 需要转化为矩形
x_max = 0
y_max = 0
x_min = 100000
y_min = 100000
for lk in range(len(i['points'])):
x1 = float(i['points'][lk][0])
y1 = float(i['points'][lk][1])
# print(x1)
if x_max < x1:
x_max = x1
if y_max < y1:
y_max = y1
if y_min > y1:
y_min = y1
if x_min > x1:
x_min = x1
bb = (x_min, y_max, x_max, y_min)
if (i['shape_type'] == 'rectangle'): # 为矩形不需要转换
x1 = float(i['points'][0][0])
y1 = float(i['points'][0][1])
x2 = float(i['points'][1][0])
y2 = float(i['points'][1][1])
bb = (x1, y1, x2, y2)
bbox = convert((img_w, img_h), bb)
try:
f.write(str(name2id[label_name]) + " " + " ".join([str(a) for a in bbox]) + '\n')
except:
pass
if __name__ == "__main__":
json_floder_path = '.\\json\\' # 存放json的文件夹的绝对路径
txt_outer_path = '.\\labels\\' # 存放txt的文件夹绝对路径
json_names = os.listdir(json_floder_path)
print("共有:{}个文件待转化".format(len(json_names)))
flagcount = 0
for json_name in json_names:
decode_json(json_floder_path, txt_outer_path, json_name)
flagcount += 1
print("还剩下{}个文件未转化".format(len(json_names) - flagcount))
# break
print('转化全部完毕')
又开始打标了-
完成打标后,转换文件格式,再调用YOLOv8-seg 实例分割onnx模型即可,下一篇文章再写了,苦命打标先 又要过去一天了- -