使用LIO-SAM进行点云赋色 与 激光雷达和相机的精细化标定(防止自己忘记的博客)----- 激光雷达和相机的精细化标定

目录

[1 标定相机](#1 标定相机)

[2 激光雷达、相机粗标定](#2 激光雷达、相机粗标定)

[3 精细化标定激光雷达和相机](#3 精细化标定激光雷达和相机)


1 标定相机

使用Kaliber标定D435i相机,本次标定的分辨率为1920*1080,相机的内参如下:

FX:1439.96402547

FY:1442.82612329

CX:979.00103052

CY:565.47085426

K1:0.10055069

K2:-0.2034116

P1:0.00245444

P2:-0.00117788

由于做点云赋色,并不要求VIO性能,因此重投影误差不要求很小,本次重投影误差为2pixel:

2 激光雷达、相机粗标定

使用autoware的雷达相机标定工具,粗略的求出Lidar->Camera和Camera->Lidar的旋转平移变换:

Tcl

\[-0.06861033 -0.99751013 -0.01631455 0.03627205

0.03137146 0.01418779 -0.99940709 -0.03832164

0.99715017 -0.06908146 0.03031992 -0.03982055

0. 0. 0. 1. \]

Tlc

\[-0.06861033 0.03137146 0.99715016 0.04339791

-0.99751013 0.0141878 -0.06908146 0.03397458

-0.01631454 -0.9994071 0.03031992 -0.0364998

0. 0. 0. 1. \]

3 精细化标定激光雷达和相机

使用录制好的标定包,删除掉工作空间的这三个文件夹的内容:

在外刷新ROS环境。并进入clion:

启动groundremove节点,并播放标定用包。位置在/bag/PatchmatchNet-main/data/清明/assistBD.bag中。

得到了拆分的雷达点云和图像:

得到拆分图像后,运行/home/liuhongwei/catkin_mask/src/predict_in_lvi.py文件,执行DetectMask函数,将文件夹换成mask文件夹。

执行。得到标定的mask信息。

在assistBiaoding.cpp中,将相机参数换掉。

代码的57-59行替换雷达->相机的变换矩阵。

27-33行读入邻近的帧

原本的标定结果是这样的,需要调整,对齐图像:

得到精细化标定结果:

选择另外图像进行微调:

微调成功!标定成功!

相关推荐
m0_6501082410 分钟前
UniScene:面向自动驾驶的统一占用率中心驾驶场景生成
论文阅读·自动驾驶·uniscene·训练数据生成·语义占用率生成·多视角视频生成·激光雷达点云生成
TaoSense32 分钟前
德州仪器(TI)C2000系列微控制器
机器人
AI即插即用40 分钟前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
Deepoch44 分钟前
Deepoc具身模型:驱动清洁机器人迈向“场景智能”新纪元
科技·机器人·开发板·具身智能·清洁机器人·deepoc
机 _ 长2 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
yong99903 小时前
MATLAB的智能扫地机器人工作过程仿真
开发语言·matlab·机器人
深蓝学院3 小时前
Science Robotics 首篇里程计: CMU 让机器人遇退化场景 “自动升档”,稳跑不丢轨迹
机器人
lixzest4 小时前
目标检测算法应用工程师 面试高频题 + 标准答案
python·yolo·目标检测·计算机视觉
康谋自动驾驶5 小时前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
机 _ 长5 小时前
YOLO26 蒸馏改进全攻略:从理论到实战 (Response + Feature + Relation)
人工智能·深度学习·yolo·目标检测·计算机视觉