使用LIO-SAM进行点云赋色 与 激光雷达和相机的精细化标定(防止自己忘记的博客)----- 激光雷达和相机的精细化标定

目录

[1 标定相机](#1 标定相机)

[2 激光雷达、相机粗标定](#2 激光雷达、相机粗标定)

[3 精细化标定激光雷达和相机](#3 精细化标定激光雷达和相机)


1 标定相机

使用Kaliber标定D435i相机,本次标定的分辨率为1920*1080,相机的内参如下:

FX:1439.96402547

FY:1442.82612329

CX:979.00103052

CY:565.47085426

K1:0.10055069

K2:-0.2034116

P1:0.00245444

P2:-0.00117788

由于做点云赋色,并不要求VIO性能,因此重投影误差不要求很小,本次重投影误差为2pixel:

2 激光雷达、相机粗标定

使用autoware的雷达相机标定工具,粗略的求出Lidar->Camera和Camera->Lidar的旋转平移变换:

Tcl

\[-0.06861033 -0.99751013 -0.01631455 0.03627205

0.03137146 0.01418779 -0.99940709 -0.03832164

0.99715017 -0.06908146 0.03031992 -0.03982055

0. 0. 0. 1. \]

Tlc

\[-0.06861033 0.03137146 0.99715016 0.04339791

-0.99751013 0.0141878 -0.06908146 0.03397458

-0.01631454 -0.9994071 0.03031992 -0.0364998

0. 0. 0. 1. \]

3 精细化标定激光雷达和相机

使用录制好的标定包,删除掉工作空间的这三个文件夹的内容:

在外刷新ROS环境。并进入clion:

启动groundremove节点,并播放标定用包。位置在/bag/PatchmatchNet-main/data/清明/assistBD.bag中。

得到了拆分的雷达点云和图像:

得到拆分图像后,运行/home/liuhongwei/catkin_mask/src/predict_in_lvi.py文件,执行DetectMask函数,将文件夹换成mask文件夹。

执行。得到标定的mask信息。

在assistBiaoding.cpp中,将相机参数换掉。

代码的57-59行替换雷达->相机的变换矩阵。

27-33行读入邻近的帧

原本的标定结果是这样的,需要调整,对齐图像:

得到精细化标定结果:

选择另外图像进行微调:

微调成功!标定成功!

相关推荐
cdming1 小时前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
逐云者1231 小时前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
Lenz's law2 小时前
智元灵犀X1-本体通讯架构分析
机器人
万俟淋曦2 小时前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
CoookeCola2 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
应用市场4 小时前
OpenCV进阶:图像变换、增强与特征检测实战
人工智能·opencv·计算机视觉
lingchen19064 小时前
卷积神经网络中的卷积运算原理
深度学习·计算机视觉·cnn
灵遁者书籍作品4 小时前
语言的拓扑学约束公理:语言对实在的描述具有拓扑不变量——某些真理必须通过悖论、沉默或隐喻表达
人工智能·计算机视觉
Antonio9158 小时前
【图像处理】图片的前向映射与后向映射
图像处理·人工智能·计算机视觉
武子康9 小时前
AI-调查研究-106-具身智能 机器人学习数据采集工具和手段:传感器、API、遥操作、仿真与真人示教全流程
人工智能·深度学习·机器学习·ai·系统架构·机器人·具身智能