使用LIO-SAM进行点云赋色 与 激光雷达和相机的精细化标定(防止自己忘记的博客)----- 激光雷达和相机的精细化标定

目录

[1 标定相机](#1 标定相机)

[2 激光雷达、相机粗标定](#2 激光雷达、相机粗标定)

[3 精细化标定激光雷达和相机](#3 精细化标定激光雷达和相机)


1 标定相机

使用Kaliber标定D435i相机,本次标定的分辨率为1920*1080,相机的内参如下:

FX:1439.96402547

FY:1442.82612329

CX:979.00103052

CY:565.47085426

K1:0.10055069

K2:-0.2034116

P1:0.00245444

P2:-0.00117788

由于做点云赋色,并不要求VIO性能,因此重投影误差不要求很小,本次重投影误差为2pixel:

2 激光雷达、相机粗标定

使用autoware的雷达相机标定工具,粗略的求出Lidar->Camera和Camera->Lidar的旋转平移变换:

Tcl

\[-0.06861033 -0.99751013 -0.01631455 0.03627205

0.03137146 0.01418779 -0.99940709 -0.03832164

0.99715017 -0.06908146 0.03031992 -0.03982055

0. 0. 0. 1. \]

Tlc

\[-0.06861033 0.03137146 0.99715016 0.04339791

-0.99751013 0.0141878 -0.06908146 0.03397458

-0.01631454 -0.9994071 0.03031992 -0.0364998

0. 0. 0. 1. \]

3 精细化标定激光雷达和相机

使用录制好的标定包,删除掉工作空间的这三个文件夹的内容:

在外刷新ROS环境。并进入clion:

启动groundremove节点,并播放标定用包。位置在/bag/PatchmatchNet-main/data/清明/assistBD.bag中。

得到了拆分的雷达点云和图像:

得到拆分图像后,运行/home/liuhongwei/catkin_mask/src/predict_in_lvi.py文件,执行DetectMask函数,将文件夹换成mask文件夹。

执行。得到标定的mask信息。

在assistBiaoding.cpp中,将相机参数换掉。

代码的57-59行替换雷达->相机的变换矩阵。

27-33行读入邻近的帧

原本的标定结果是这样的,需要调整,对齐图像:

得到精细化标定结果:

选择另外图像进行微调:

微调成功!标定成功!

相关推荐
xinxiangwangzhi_37 分钟前
立体视觉资料汇总
计算机视觉
2501_9413331038 分钟前
耳机听筒检测与识别 Ear_Piece和Head_Phone目标检测改进版freeanchor_r101_fpn_1x_coco模型_1
人工智能·目标检测·计算机视觉
爱打代码的小林2 小时前
opencv(边缘检测)
人工智能·opencv·计算机视觉
Aaron_9452 小时前
Skyvern:基于LLM和计算机视觉的浏览器自动化平台深度解析
人工智能·计算机视觉·自动化
2501_941507942 小时前
【房屋建筑目标检测】基于Decoupled-Solo模型的建筑检测方法实现与优化_r50_fpn_1x_coco
人工智能·目标检测·计算机视觉
人工小情绪3 小时前
PSPNet (Pyramid Scene Parsing Network)论文解读
人工智能·深度学习·计算机视觉
啊阿狸不会拉杆3 小时前
《数字图像处理》第 10 章 - 图像分割
图像处理·人工智能·深度学习·算法·计算机视觉·数字图像处理
右手 无名指3 小时前
Github Actions工作流配置webhook推送到钉钉机器人
机器人·github·钉钉
2501_941329723 小时前
人体正面检测与面部识别:基于改进GA-RPN模型的精准定位与区分技术
人工智能·计算机视觉·目标跟踪
wechat_Neal4 小时前
Overview of AI concepts-Computer vision
人工智能·计算机视觉