物联网中的预测分析:当IoTDA遇上ModelArts

本文分享自华为云社区《最佳实践:华为云IoTDA结合ModelArts实现预测分析》,作者:华为IoT云服务。

场景说明

在物联网解决方案中,针对庞大的数据进行自动学习时,需要对海量数据进行标注、训练,按照传统的方式进行标注、训练不仅耗时耗力,而且对资源消耗也是非常庞大的。华为云物联网平台可以通过规则引擎,将数据转发到华为云其他云服务,可实现将海量数据通过函数工作流(FunctionGraph)进行处理,再将数据流入AI开发平台(ModelArts)进行AI分析,并将分析结果统一转发至HTTP服务器中。

图1 场景说明

在本示例中,我们实现以下场景:

设备上报银行客户特征信息,物联网平台将数据转发至FunctionGraph,由FunctionGraph转发至ModelArts进行AI分析,最终将分析的结果转发至HTTP服务器中。

整体流程

  1. 创建并发布ModelArts模型。
  2. 创建FunctionGraph函数。
  3. 构建一个HTTP服务器。
  4. 创建MQTT协议产品,并创建设备。
  5. 创建流转规则,将数据流转至FunctionGraph。
  6. 查看HTTP服务器是否收到AI分析后的消息。

前提条件

  • 已注册华为官方帐号。未注册可参考注册华为账户完成注册。
  • 已完成实名制认证。未完成可在华为云上单击实名认证完成认证,否则会影响后续云服务的开通。
  • 已开通设备接入服务。未开通则访问设备接入服务,单击"免费试用"或单击"价格计算器"购买并开通该服务。
  • 已开通FunctionGraph服务。未开通则访问FunctionGraph服务,单击"立即使用"后开通该服务。
  • 已开通ModelArts服务。未开通则访问AI开发平台,单击"控制台"后进入该服务。
  • 自建一个HTTP服务器,并提供POST接口用来接收推送的数据(本示例默认已经提供好相应的服务器与接口,不再展示如何搭建HTTP服务器指导)。

配置ModelArts模型

1.下载ModelArts-Lab工程,在\ModelArts-Lab-master\official_examples\Using_ModelArts_to_Create_a_Bank_Marketing_Application\data"目录下获取训练数据文件"train.csv"。该训练数据主要展示银行中的一种常见业务:根据客户特征(年龄、工作类型、婚姻状况、文化程度、是否有房贷和是否有个人贷款),预测客户是否愿意办理定期存款业务。

2.可将训练数据存放在OBS中,供创建数据集使用。进入OBS控制台,选则一个桶,然后单击"上传对象"。若没有桶,可以单击右上角"创建桶"创建一个新的桶。

图2 上传训练数据

3.登录华为云官方网站,访问AI开发平台,单击"控制台",进入ModelArts服务。

4.选择左侧导航栏"自动学习>前往新版>创建项目",进入创建预测分析界面。

图3 预测分析

5.选择数据集、标签列(数据中预测结果的列,本示例中为str7),若没有数据集,可以单击"创建数据集"进行创建。

图4 创建预测分析

图5 创建数据集

6.当执行到服务部署时,选择资源池、AI应用及版本,单击"继续运行"。

图6 服务部署

7.等部署完成之后,选择左侧导航栏"部署上线 > 在线服务",进入在线服务页面中选择部署的服务, 单击"修改",进入修改服务页面,打开APP认证进行授权配置,完成后单击"下一步"并提交。

图7 授权

8.单击"部署上线>在线服务",点击进入已部署的服务,选择"预测",复制以下数据到预测代码中后,单击"预测"后可查看返回结果,结果中的predict为no则表示用户不会办理存款。

json 复制代码
{
  "data": 
  {
    "count": 1,
    "req_data": 
	[
      {
        "str1": "34",
        "str2": "blue-collar",
        "str3": "single",
        "str4": "tertiary",
        "str5": "no",
        "str6": "no"
      }
    ]
  }
}

图8 预测

9.更多详细关于Modelarts的说明可以参考ModelArts相关文档

配置FunctionGraph函数

1.参考数据转发至FunctionGraph函数工作流进行函数工作流配置。本示例中由于需要使用ModelArts相关配置参数,可按照如下方式,在代码中添加配置项并访问ModelArts预测接口,body体结构参考8

ini 复制代码
//2.获取ModelArts预测链接. 用来拼装请求URL
String forecastServerAddress = context.getUserData(FORECAST_SERVER_ADDRESS);
log.log("forecastServerAddress: " + forecastServerAddress);
//3.获取ModelArts中的AK/APP_KEY
String ak = context.getUserData(ACCESS_KEY);
//4.获取ModelArts中的SK/APP_SECRET
String sk = context.getUserData(ACCESS_SECRET);

Request request = new Request();
request.setUrl(forecastServerAddress);
request.setMethod(HttpMethodName.POST.name());
request.setAppKey(ak);
request.setAppSecrect(sk);
request.addHeader(HttpHeaders.CONTENT_TYPE, ContentType.APPLICATION_JSON.toString());
request.setBody(body);
Signer signer = new Signer();
signer.sign(request);

Map<String, String> headers = request.getHeaders();
HttpPost httpPost = new HttpPost(url);
headers.forEach(httpPost::setHeader);
httpPost.setEntity(new StringEntity(body, ContentType.APPLICATION_JSON));
CloseableHttpResponse response = null;
try {
    response = httpClient.execute(httpPost);
    if (response.getStatusLine().getStatusCode() == HttpStatus.SC_OK) {
        String content = EntityUtils.toString(response.getEntity(), StandardCharsets.UTF_8);
        IoTDAModelArtsDemo.log.log("response content is: + " + content);
        return content;
    }
    String errContent = EntityUtils.toString(response.getEntity(), StandardCharsets.UTF_8);
    IoTDAModelArtsDemo.log.log("response err content is: + " + errContent);
    return errContent;
} finally {
    if (response != null) {
        response.close();
    }
}

2.在函数工作流中,单击"设置>环境变量",环境变量信息如下。

表1 环境变量说明

图9 设置环境变量

图10 查看预测接口信息

3.单击"代码>配置测试事件>创建新的测试事件>空白模板"。内容示例如下:

css 复制代码
{
    "resource": "device.message",
    "event": "report",
    "event_time": "20231227T082702Z",
    "event_time_ms": "2023-12-27T08:27:02.944Z",
    "request_id": "1d041aa3-29b8-43d3-aae3-3905de130537",
    "notify_data": {
        "header": {
            "app_id": "dc12bf47e95c4723a00f4a007073fc7e",
            "device_id": "658bdb475d3bc3372c99feb9_12345484121",
            "node_id": "12345484121",
            "product_id": "658bdb475d3bc3372c99feb9",
            "gateway_id": "658bdb475d3bc3372c99feb9_12345484121"
        },
        "body": {
            "topic": "$oc/devices/658bdb475d3bc3372c99feb9_12345484121/sys/messages/up",
            "content": {
                "age": "34",
                "profession": "blue-collar",
                "maritalStatus": "single",
                "educationalStatus": "tertiary",
                "realEstateSituation": "no",
                "loanStatus": "tertiary"
            }
        }
    }
}

图11 配置测试事件

4.配置完测试事件后,单击"测试",执行结果返回success(以实际函数返回结果为准),则表示成功。配置的HTTP服务器则能收到对应的预测结果。

图12 预测结果

创建产品和设备

1.访问设备接入服务,单击"管理控制台"进入设备接入控制台。

2.选择左侧导航栏的"产品",单击"创建产品",创建一个基于MQTT协议的产品,填写参数后,单击"确定"。

图13 创建产品-MQTT

3.导入产品模型,请参考导入产品模型

在该产品下注册设备,请参考注册单个设备

说明:本文中使用的产品模型和设备仅为示例,您可以使用自己的产品模型和设备进行操作。

数据转发规则配置

1.选择左侧导航栏的"规则>数据转发",单击"创建规则"。

2.参考下表参数说明,填写规则内容。以下参数取值仅为示例,您可参考用户指南创建自己的规则,填写完成后单击"创建规则"。

图14 新建消息上报流转规则-数据转发至FunctionGraph

表2 参数说明

3.单击"设置转发目标"页签,单击"添加",设置转发目标。

图15 新建转发目标-转发至FunctionGraph

参考下表参数说明,填写转发目标。填写完成后单击"确定"。

表3 参数说明

4.单击"启动",激活配置好的数据转发规则。

图16 启动规则-消息上报-转发至FunctionGraph

模拟数据上报及结果验证

1.使用MQTT模拟器连接到平台(模拟器使用请参考:使用MQTT.fx调测)。

2.使用模拟器进行消息上报,详情请参考:设备消息上报

上报内容如下:

json 复制代码
{
    "age": "34",
    "profession": "blue-collar",
    "maritalStatus": "single",
    "educationalStatus": "tertiary",
    "realEstateSituation": "no",
    "loanStatus": "tertiary"
}

3.查看HTTP服务器是否收到预测结果。

图17 查看消息

点击关注,第一时间了解华为云新鲜技术~

相关推荐
吃个糖糖2 分钟前
36 Opencv SURF 关键点检测
人工智能·opencv·计算机视觉
AI慧聚堂14 分钟前
自动化 + 人工智能:投标行业的未来是什么样的?
运维·人工智能·自动化
盛世隐者15 分钟前
【pytorch】循环神经网络
人工智能·pytorch
cdut_suye28 分钟前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
开发者每周简报1 小时前
微软的AI转型故事
人工智能·microsoft
逝灮1 小时前
【蓝桥杯——物联网设计与开发】基础模块8 - RTC
stm32·单片机·嵌入式硬件·mcu·物联网·蓝桥杯·rtc
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(1)
人工智能·python·算法·机器学习·sklearn
普密斯科技1 小时前
手机外观边框缺陷视觉检测智慧方案
人工智能·计算机视觉·智能手机·自动化·视觉检测·集成测试
四口鲸鱼爱吃盐2 小时前
Pytorch | 利用AI-FGTM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python
lishanlu1362 小时前
Pytorch分布式训练
人工智能·ddp·pytorch并行训练