卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型

卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型

      • [1. LeNet-5(1998)](#1. LeNet-5(1998))
      • [2. AlexNet(2012)](#2. AlexNet(2012))
      • [3. ZFNet(2013)](#3. ZFNet(2013))
      • [4. VGGNet(2014)](#4. VGGNet(2014))
      • [5. GoogLeNet(2014)](#5. GoogLeNet(2014))
      • [6. ResNet(2015)](#6. ResNet(2015))
      • [7. DenseNet(2017)](#7. DenseNet(2017))
      • [8. EfficientNet(2019)](#8. EfficientNet(2019))
      • [9. Vision Transformers(ViT)(2020)](#9. Vision Transformers(ViT)(2020))
      • [10. 自适应卷积网络(2021)](#10. 自适应卷积网络(2021))
      • 结论

卷积神经网络(CNN)的发展经历了多个阶段和里程碑式的模型。以下是卷积神经网络的历史发展概述:

1. LeNet-5(1998)

  • 作者:Yann LeCun
  • 特点:是最早的卷积神经网络之一,主要用于手写数字识别。
  • 结构:包括卷积层、池化层和全连接层。

2. AlexNet(2012)

  • 作者:Alex Krizhevsky、Ilya Sutskever、Geoffrey Hinton
  • 特点:通过在ImageNet大规模视觉识别挑战赛(ILSVRC)上取得突破性成果,引发了深度学习在计算机视觉领域的复兴。
  • 结构:包括多个卷积层、池化层、ReLU激活函数和全连接层。

3. ZFNet(2013)

  • 作者:Matthew D. Zeiler、Rob Fergus
  • 特点:是AlexNet的一个改进版本,提出了一种新的可视化方法,即Deconvolutional Networks。
  • 结构:与AlexNet相似,但有细微的结构差异和优化。

4. VGGNet(2014)

  • 作者:Karen Simonyan、Andrew Zisserman
  • 特点:通过使用更小的卷积核(3x3)和更深的网络结构,在ImageNet比赛中取得了优异的成绩。
  • 结构:主要由3x3的卷积层和2x2的池化层组成,深度可选为VGG16或VGG19。

5. GoogLeNet(2014)

  • 作者:Christian Szegedy等(Google Research)
  • 特点:引入了"Inception模块"来提取多尺度的特征,以及全局平均池化来减少参数数量。
  • 结构:包括多个Inception模块,与传统的卷积神经网络有很大的不同。

6. ResNet(2015)

  • 作者:Kaiming He等(Microsoft Research)
  • 特点:通过引入残差连接(Residual Connection)解决了深度卷积神经网络训练过程中的梯度消失和梯度爆炸问题。
  • 结构:包括多个残差块(Residual Block),可以构建非常深的网络。

7. DenseNet(2017)

  • 作者:Gao Huang等
  • 特点:进一步提出了密集连接(Dense Connection)来增强特征重用和梯度流动。
  • 结构:每个层与所有前面的层直接连接。

8. EfficientNet(2019)

  • 作者:Mingxing Tan、Quoc V. Le
  • 特点:通过网络缩放方法在网络深度、宽度和分辨率上进行均衡,提高了模型的性能和计算效率。

9. Vision Transformers(ViT)(2020)

  • 作者:Alexey Dosovitskiy等(Google Research)
  • 特点:首次将Transformer架构应用于计算机视觉任务,取得了与卷积神经网络相当的性能。

10. 自适应卷积网络(2021)

  • 作者:Xin Li等
  • 特点:通过自适应地调整卷积核形状和大小,实现了更高效的特征提取。

结论

卷积神经网络从LeNet-5到自适应卷积网络,经历了多个重要的发展阶段,形式逐渐丰富和复杂。这些模型不仅在图像分类、物体检

相关推荐
房产中介行业研习社14 分钟前
2026年1月房产中介管理系统排名
大数据·人工智能
沛沛老爹25 分钟前
Web转AI架构篇 Agent Skills vs MCP:工具箱与标准接口的本质区别
java·开发语言·前端·人工智能·架构·企业开发
ZKNOW甄知科技36 分钟前
IT自动分派单据:让企业服务流程更智能、更高效的关键技术
大数据·运维·数据库·人工智能·低代码·自动化
OpenCSG38 分钟前
如何通过 AgenticOps x CSGHub 重塑企业 AI 生产力
人工智能
Nautiluss1 小时前
一起调试XVF3800麦克风阵列(十四)
linux·人工智能·音频·语音识别·dsp开发
地瓜伯伯1 小时前
elasticsearch性能调优方法原理与实战
人工智能·elasticsearch·语言模型·数据分析
ZCXZ12385296a1 小时前
YOLO13改进模型C3k2-SFHF实现:阻尼器类型识别与分类系统详解
人工智能·分类·数据挖掘
黑客思维者1 小时前
2025年AI垃圾(AI Slop)现象综合研究报告:规模、影响与治理路径
人工智能·搜索引擎·百度
Aspect of twilight1 小时前
QwenVL 模型输入细节
人工智能·qwen
悟纤1 小时前
Suno 电子舞曲创作指南:102 个实用 Prompt 精选 | Suno高级篇 | 第20篇
人工智能·prompt·suno·suno ai·suno api·ai music