GEE数据集——汉森全球森林变化数据集Hansen Global Forest Change v1.11 (2000-2023)

Hansen Global Forest Change v1.11 (2000-2023)

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据。

请参阅 1.11 版更新的用户说明以及相关期刊文章:Hansen、Potapov、Moore、Hancher 等:"21 世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160 (2013):850-853.

Dataset Availability

2000-01-01T00:00:00 - 2023-12-31T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2023_v1_11")

Resolution

30.92 meters

Bands Table
Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask * Bit 0: Forest loss during the study period. * 0: Not loss * 1: Loss
gain Forest gain during the period 2000-2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask * Bit 0: Forest gain during the period 2000-2012. * 0: No gain * 1: Gain
first_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69µm
first_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90µm
first_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75µm
first_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35µm
last_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69µm
last_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90µm
last_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75µm
last_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35µm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask * Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies. * 0: No data * 1: Mapped land surface * 2: Permanent water bodies
lossyear Year of gross forest cover loss event. Forest loss during the study period, defined as a stand-replacement disturbance, or a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value in the range 1-23, representing loss detected primarily in the year 2001-2023, respectively. 0 23

代码

javascript 复制代码
var geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-111.37186963558197, 41.621164801215464],
          [-111.37186963558197, 34.14087733236979],
          [-100.12186963558197, 34.14087733236979],
          [-100.12186963558197, 41.621164801215464]]], null, false);
var image = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
print(image)

Map.addLayer(image.clip(geometry),{},'sss')

数据引用

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. 10.1126/science.1244693 Data available on-line at: Global Forest Change.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

相关推荐
嚯——哈哈1 小时前
轻量云服务器:入门级云计算的最佳选择
运维·服务器·云计算
请你喝好果汁6412 小时前
Kingfisher 下载ENA、NCBI SRA、AWS 和 Google Cloud)序列数据和元数据
云计算·aws
九陌斋2 小时前
如何使用AWS Lambda构建一个云端工具(超详细)
云计算·aws
嚯——哈哈2 小时前
AWS云服务器:开启高效计算的新纪元
服务器·云计算·aws
徒步僧2 小时前
ThingsBoard规则链节点:AWS SNS 节点详解
云计算·aws
九河云2 小时前
如何对AWS进行节省
大数据·云计算·aws
命里有定数14 小时前
Ubuntu问题 - 显示ubuntu服务器上可用磁盘空间 一条命令df -h
服务器·ubuntu·数据集
Akamai中国1 天前
出海第一步:搞定业务系统的多区域部署
开发语言·网络·架构·云计算·智能路由器·云服务·云平台
hotlinhao1 天前
阿里云IIS虚拟主机部署ssl证书
阿里云·云计算·ssl
天草二十六_简村人1 天前
Java语言编程,通过阿里云mongo数据库监控实现数据库的连接池优化
java·jvm·数据库·mongodb·阿里云·微服务·云计算