GEE数据集——汉森全球森林变化数据集Hansen Global Forest Change v1.11 (2000-2023)

Hansen Global Forest Change v1.11 (2000-2023)

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据。

请参阅 1.11 版更新的用户说明以及相关期刊文章:Hansen、Potapov、Moore、Hancher 等:"21 世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160 (2013):850-853.

Dataset Availability

2000-01-01T00:00:00 - 2023-12-31T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2023_v1_11")

Resolution

30.92 meters

Bands Table
Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask * Bit 0: Forest loss during the study period. * 0: Not loss * 1: Loss
gain Forest gain during the period 2000-2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask * Bit 0: Forest gain during the period 2000-2012. * 0: No gain * 1: Gain
first_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69µm
first_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90µm
first_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75µm
first_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35µm
last_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69µm
last_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90µm
last_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75µm
last_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35µm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask * Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies. * 0: No data * 1: Mapped land surface * 2: Permanent water bodies
lossyear Year of gross forest cover loss event. Forest loss during the study period, defined as a stand-replacement disturbance, or a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value in the range 1-23, representing loss detected primarily in the year 2001-2023, respectively. 0 23

代码

javascript 复制代码
var geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-111.37186963558197, 41.621164801215464],
          [-111.37186963558197, 34.14087733236979],
          [-100.12186963558197, 34.14087733236979],
          [-100.12186963558197, 41.621164801215464]]], null, false);
var image = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
print(image)

Map.addLayer(image.clip(geometry),{},'sss')

数据引用

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. 10.1126/science.1244693 Data available on-line at: Global Forest Change.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

相关推荐
Johny_Zhao10 小时前
Centos8搭建hadoop高可用集群
linux·hadoop·python·网络安全·信息安全·云计算·shell·yum源·系统运维·itsm
_可乐无糖1 天前
AWS WebRTC:我们的业务模式
云计算·音视频·webrtc·aws
Kentos(acoustic ver.)1 天前
云原生 —— K8s 容器编排系统
云原生·容器·kubernetes·云计算·k8s
Britz_Kevin1 天前
从零开始的云计算生活——番外6,使用zabbix对中间件监控
云计算·生活·zabbix
贺贺丿1 天前
Docker2-容器应用工具及docker命令
linux·运维·docker·容器·自动化·云计算
程序猿追2 天前
亚马逊云科技:引领云计算新时代,开启无限可能
科技·云计算·亚马逊
果子⌂2 天前
Kubernetes 服务发布进阶
linux·运维·服务器·云原生·容器·kubernetes·云计算
青梅主码-杰哥2 天前
中央广播电视总台联合阿里云研究院权威发布《中国人工智能应用发展报告(2025)》:我国依旧需要大力注重人工智能人才的培养
人工智能·阿里云·云计算
NUZGNAW2 天前
等保二级、三级配置表(阿里云)
阿里云·云计算
旧书包的青春2 天前
阿里云ECS坑之dnf-makecache系统软件更新检测服务
阿里云·云计算