GEE数据集——汉森全球森林变化数据集Hansen Global Forest Change v1.11 (2000-2023)

Hansen Global Forest Change v1.11 (2000-2023)

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据。

请参阅 1.11 版更新的用户说明以及相关期刊文章:Hansen、Potapov、Moore、Hancher 等:"21 世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160 (2013):850-853.

Dataset Availability

2000-01-01T00:00:00 - 2023-12-31T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2023_v1_11")

Resolution

30.92 meters

Bands Table
Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask * Bit 0: Forest loss during the study period. * 0: Not loss * 1: Loss
gain Forest gain during the period 2000-2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask * Bit 0: Forest gain during the period 2000-2012. * 0: No gain * 1: Gain
first_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69µm
first_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90µm
first_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75µm
first_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35µm
last_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69µm
last_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90µm
last_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75µm
last_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35µm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask * Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies. * 0: No data * 1: Mapped land surface * 2: Permanent water bodies
lossyear Year of gross forest cover loss event. Forest loss during the study period, defined as a stand-replacement disturbance, or a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value in the range 1-23, representing loss detected primarily in the year 2001-2023, respectively. 0 23

代码

javascript 复制代码
var geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-111.37186963558197, 41.621164801215464],
          [-111.37186963558197, 34.14087733236979],
          [-100.12186963558197, 34.14087733236979],
          [-100.12186963558197, 41.621164801215464]]], null, false);
var image = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
print(image)

Map.addLayer(image.clip(geometry),{},'sss')

数据引用

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. 10.1126/science.1244693 Data available on-line at: Global Forest Change.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

相关推荐
腾讯云大数据1 小时前
IDC MarketScape:腾讯云位居国内生成式AI数据基础设施“领导者”象限
人工智能·云计算·腾讯云
三味神风2 小时前
Linux系统安全加固:构建云计算安全的第一道防线
安全·云计算·系统安全
TG_yunshuguoji5 小时前
阿里云国际代理:阿里云的云数据库是什么?
服务器·数据库·安全·阿里云·云计算
飞翔的佩奇20 小时前
【完整源码+数据集+部署教程】骰子点数识别图像实例分割系统源码和数据集:改进yolo11-DCNV2
python·yolo·计算机视觉·数据集·yolo11·骰子点数识别图像实例分割
守.护1 天前
云计算学习笔记——日志、SELinux、FTP、systemd篇
linux·云计算·ftp·selinux
安逸sgr1 天前
Zotero白嫖腾讯云翻译
论文阅读·云计算·腾讯云
真上帝的左手1 天前
20. 云计算-华为云-云服务
华为云·云计算
uesowys1 天前
腾讯云大模型训练平台
云计算·腾讯云·大模型训练平台
熊猫钓鱼>_>1 天前
基于腾讯云MCP广场服务Firecrawl MCP网络采集服务构建自动化竞品监测工作日志
自动化·云计算·腾讯云
就叫飞六吧1 天前
阿里云vs腾讯云按量付费服务器
阿里云·云计算·腾讯云