GEE数据集——汉森全球森林变化数据集Hansen Global Forest Change v1.11 (2000-2023)

Hansen Global Forest Change v1.11 (2000-2023)

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据。

请参阅 1.11 版更新的用户说明以及相关期刊文章:Hansen、Potapov、Moore、Hancher 等:"21 世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160 (2013):850-853.

Dataset Availability

2000-01-01T00:00:00 - 2023-12-31T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2023_v1_11")

Resolution

30.92 meters

Bands Table
Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask * Bit 0: Forest loss during the study period. * 0: Not loss * 1: Loss
gain Forest gain during the period 2000-2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask * Bit 0: Forest gain during the period 2000-2012. * 0: No gain * 1: Gain
first_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69µm
first_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90µm
first_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75µm
first_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35µm
last_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69µm
last_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90µm
last_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75µm
last_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35µm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask * Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies. * 0: No data * 1: Mapped land surface * 2: Permanent water bodies
lossyear Year of gross forest cover loss event. Forest loss during the study period, defined as a stand-replacement disturbance, or a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value in the range 1-23, representing loss detected primarily in the year 2001-2023, respectively. 0 23

代码

javascript 复制代码
var geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-111.37186963558197, 41.621164801215464],
          [-111.37186963558197, 34.14087733236979],
          [-100.12186963558197, 34.14087733236979],
          [-100.12186963558197, 41.621164801215464]]], null, false);
var image = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
print(image)

Map.addLayer(image.clip(geometry),{},'sss')

数据引用

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. 10.1126/science.1244693 Data available on-line at: Global Forest Change.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

相关推荐
九河云2 小时前
AWS账号注册费用详解:新用户是否需要付费?
服务器·云计算·aws
神一样的老师2 小时前
利用亚马逊AWS IoT核心和MQTT进行数据采集的综合指南
云计算·aws
昔我往昔8 小时前
阿里云文本内容安全处理
安全·阿里云·云计算
写代码的学渣11 小时前
Linux云计算个人学习总结(一)
linux·运维·云计算
林农12 小时前
C02S11-Linux系统的安全与控制
linux·云计算
HyperAI超神经15 小时前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
danns88816 小时前
什么是 AWS PrivateLink
云计算·aws
shiran小坚果18 小时前
AWS RDS MySQL内存使用
数据库·mysql·云计算·database·aws
武汉唯众智创20 小时前
职业院校关于大数据、云计算和物联网传感器技术的结合与应用探讨
大数据·云计算·物联网传感器技术