GEE数据集——汉森全球森林变化数据集Hansen Global Forest Change v1.11 (2000-2023)

Hansen Global Forest Change v1.11 (2000-2023)

对大地遥感卫星图像进行时间序列分析以确定全球森林范围和变化特征的结果。

第一个 "和 "最后一个 "波段是大地遥感卫星光谱波段(红、近红外、SWIR1 和 SWIR2)的第一个和最后一个可用年份的参考多光谱图像。参考复合图像代表了这些波段中每个波段的生长季节质量评估观测数据集的中值观测数据。

请参阅 1.11 版更新的用户说明以及相关期刊文章:Hansen、Potapov、Moore、Hancher 等:"21 世纪森林覆盖变化的高分辨率全球地图"。科学》342.6160 (2013):850-853.

Dataset Availability

2000-01-01T00:00:00 - 2023-12-31T00:00:00

Dataset Provider

Hansen/UMD/Google/USGS/NASA

Collection Snippet

Copied

ee.Image("UMD/hansen/global_forest_change_2023_v1_11")

Resolution

30.92 meters

Bands Table
Name Description Min Max Units Wavelength
treecover2000 Tree canopy cover for year 2000, defined as canopy closure for all vegetation taller than 5m in height. 0 100 %
loss Forest loss during the study period, defined as a stand-replacement disturbance (a change from a forest to non-forest state).
loss Bitmask * Bit 0: Forest loss during the study period. * 0: Not loss * 1: Loss
gain Forest gain during the period 2000-2012, defined as the inverse of loss (a non-forest to forest change entirely within the study period). Note that this has not been updated in subsequent versions.
gain Bitmask * Bit 0: Forest gain during the period 2000-2012. * 0: No gain * 1: Gain
first_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the first available year, typically 2000. 0.63-0.69µm
first_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the first available year, typically 2000. 0.77-0.90µm
first_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the first available year, typically 2000. 1.55-1.75µm
first_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the first available year, typically 2000. 2.09-2.35µm
last_b30 Landsat Red cloud-free image composite (corresponding to Landsat 5/7 band 3 and Landsat 8/9 band 4). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.63-0.69µm
last_b40 Landsat NIR cloud-free image composite (corresponding to Landsat 5/7 band 4 and Landsat 8/9 band 5). Reference multispectral imagery from the last available year, typically the last year of the study period. 0.77-0.90µm
last_b50 Landsat SWIR1 cloud-free image composite (corresponding to Landsat 5/7 band 5 and Landsat 8/9 band 6). Reference multispectral imagery from the last available year, typically the last year of the study period. 1.55-1.75µm
last_b70 Landsat SWIR2 cloud-free image composite (corresponding to Landsat 5/7 band 7 and Landsat 8/9 band 7). Reference multispectral imagery from the last available year, typically the last year of the study period. 2.09-2.35µm
datamask Three values representing areas of no data, mapped land surface, and permanent water bodies.
datamask Bitmask * Bits 0-1: Three values representing areas of no data, mapped land surface, and permanent water bodies. * 0: No data * 1: Mapped land surface * 2: Permanent water bodies
lossyear Year of gross forest cover loss event. Forest loss during the study period, defined as a stand-replacement disturbance, or a change from a forest to non-forest state. Encoded as either 0 (no loss) or else a value in the range 1-23, representing loss detected primarily in the year 2001-2023, respectively. 0 23

代码

javascript 复制代码
var geometry = 
    /* color: #d63000 */
    /* displayProperties: [
      {
        "type": "rectangle"
      }
    ] */
    ee.Geometry.Polygon(
        [[[-111.37186963558197, 41.621164801215464],
          [-111.37186963558197, 34.14087733236979],
          [-100.12186963558197, 34.14087733236979],
          [-100.12186963558197, 41.621164801215464]]], null, false);
var image = ee.Image("UMD/hansen/global_forest_change_2023_v1_11")
print(image)

Map.addLayer(image.clip(geometry),{},'sss')

数据引用

Hansen, M. C., P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice, and J. R. G. Townshend.

  1. "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342 (15 November): 850-53. 10.1126/science.1244693 Data available on-line at: Global Forest Change.

网址推荐

0代码在线构建地图应用

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习

https://www.cbedai.net/xg

相关推荐
是乐谷17 小时前
阿里云杭州 AI 产品法务岗位信息分享(2025 年 8 月)
java·人工智能·阿里云·面试·职场和发展·机器人·云计算
青岛佰优联创新科技有限公司19 小时前
移动板房的网络化建设
服务器·人工智能·云计算·智慧城市
夕阳与风馨20 小时前
三分钟搞懂云计算三大模型:SaaS、PaaS、IaaS 是怎么在业务中“各司其职”的?
后端·云计算
weixin_307779131 天前
AWS Lambda解压缩S3 ZIP文件流程
python·算法·云计算·aws
程序猿小D1 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测
运维行者_2 天前
使用Applications Manager进行 Apache Solr 监控
运维·网络·数据库·网络安全·云计算·apache·solr
ChaoQiezi2 天前
Python:如何在Pycharm中显示geemap地图?
python·gee
Britz_Kevin3 天前
从零开始的云计算生活——激流勇进,kubernetes模块之Pod资源对象
kubernetes·云计算·生活·#pod
阿湯哥3 天前
Cloud Computing(云计算)和Sky Computing(天空计算)
云计算
爱分享的飘哥3 天前
第六十六篇:AI模型的“口才”教练:Prompt构造策略与自动化实践
人工智能·自动化·prompt·aigc·数据集·llm训练·数据工程