作业
3.1 实验现象
crw------- 1 root root 236, 0 Apr 11 15:55 /dev/myled0
crw------- 1 root root 236, 1 Apr 11 15:55 /dev/myled1
crw------- 1 root root 236, 2 Apr 11 15:55 /dev/myled2
在串口工具,输入如下命令实现控制对应的LED灯进行工作
echo 1 > /dev/myled0 ========> led1灯点亮
echo 0 > /dev/myled0 ========> led1灯熄灭
echo 1 > /dev/myled1 ========> led2灯点亮
echo 0 > /dev/myled1 ========> led2灯熄灭
echo 1 > /dev/myled2 ========> led3灯点亮
echo 0 > /dev/myled2 ========> led3灯熄灭
3.2 编程思路
struct inode {
dev_t i_rdev; //设备号
};
int myled_open(struct inode *inode, struct file *file)
{
//获取次设备的值,将次设备号的值,通过私有数据传参,传递给write函数
return 0;
}
--------------------------------------------------------------------------------
ssize_t myled_write(struct file *file, const char __user *ubuf, size_t size, loff_t *loff)
{
//判断私有数据的值,也就是次设备号的值,决定操作哪一盏灯
return 0;
}
3.3 编程要求
- 分步注册字符设备驱动
- 自动创建设备节点
- 三盏灯地址映射
- 三盏灯初始化
- 私有数据传参
- 用户空间和内核空间数据传输
- 控制灯亮灭
demo.c
#include <linux/init.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/device.h>
#include "myled.h"
struct cdev *cdev;
#if 1
unsigned int major = 0;
#else
unsigned int major = 500;
#endif
unsigned int minor = 0;
unsigned int count = 3;
#define CNAME "myled"
struct class *cls;
struct device *device;
char kbuf[128] = "";
unsigned int *rcc_virt = NULL;
gpio_t *gpioe_virt = NULL;
gpio_t *gpiof_virt = NULL;
#define LED1_ON (gpioe_virt->ODR |= (0x1 << 10))
#define LED1_OFF (gpioe_virt->ODR &= (~(0x1 << 10)))
#define LED2_ON (gpiof_virt->ODR |= (0x1 << 10))
#define LED2_OFF (gpiof_virt->ODR &= (~(0x1 << 10)))
#define LED3_ON (gpioe_virt->ODR |= (0x1 << 8))
#define LED3_OFF (gpioe_virt->ODR &= (~(0x1 << 8)))
struct inode
{
dev_t i_rdev; // 设备号
};
int myled_open(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
ssize_t myled_read(struct file *file, char __user *ubuf, size_t size, loff_t *loff)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
ssize_t myled_write(struct file *file, const char __user *ubuf, size_t size, loff_t *loff)
{
int ret;
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
// 如果用户空间写的数据大小,大于内核空间大小,需要更正写的大小
if (size > sizeof(kbuf))
size = sizeof(kbuf);
ret = copy_from_user(kbuf, ubuf, size); // 将用户空间的数据,拷贝到内核空间
if (ret)
{
printk("copy form user is error\n");
return -EIO;
}
// kbuf[0] = 0 ==> 操作LED1 ==> kbuf[1] = 0 灯熄灭 kbuf[1] = 1 灯点亮
// kbuf[0] = 1 ==> 操作LED2 ==> kbuf[1] = 0 灯熄灭 kbuf[1] = 1 灯点亮
// kbuf[0] = 2 ==> 操作LED3 ==> kbuf[1] = 0 灯熄灭 kbuf[1] = 1 灯点亮
switch (kbuf[0])
{
case LED1:
kbuf[1] == 1 ? LED1_ON : LED1_OFF;
break;
case LED2:
kbuf[1] == 1 ? LED2_ON : LED2_OFF;
break;
case LED3:
kbuf[1] == 1 ? LED3_ON : LED3_OFF;
break;
}
return size; //!!!!!!!!!!!
return 0;
}
int myled_close(struct inode *inode, struct file *file)
{
printk("%s:%s:%d\n", __FILE__, __func__, __LINE__);
return 0;
}
// 操作方法结构体
const struct file_operations fops = {
.open = myled_open,
.read = myled_read,
.write = myled_write,
.release = myled_close,
};
// 入口函数
static int __init demo_init(void)
{
int ret;
int i;
dev_t devno;
// 分配对象
cdev = cdev_alloc();
if (cdev == NULL)
{
printk("cdev alloc is error\n");
ret = -ENOMEM;
goto ERR1;
}
// 对象初始化
cdev_init(cdev, &fops);
if (major > 0)
{ // 静态指定设备号
ret = register_chrdev_region(MKDEV(major, minor), count, CNAME);
if (ret)
{
printk("register chrdev region is error\n");
ret = -EIO;
goto ERR2;
}
}
else
{ // 动态指定设备号
ret = alloc_chrdev_region(&devno, minor, count, CNAME);
if (ret)
{
printk("alloc chrdev region is error\n");
ret = -EIO;
goto ERR2;
}
major = MAJOR(devno); // 通过设备号,获取到主设备号的值
minor = MINOR(devno); // 通过设备号,获取到次设备号的值
}
// 注册
ret = cdev_add(cdev, MKDEV(major, minor), count);
if (ret)
{
printk("cdev add is error\n");
ret = -EIO;
goto ERR3;
}
// 向上层提交目录信息
cls = class_create(THIS_MODULE, CNAME);
if (IS_ERR(cls))
{
ret = PTR_ERR(cls);
goto ERR4;
}
for (i = 0; i < count; i++)
{
// 向上层提交设备节点信息
device = device_create(cls, NULL, MKDEV(major, i), NULL, "myled%d", i);
if (IS_ERR(device))
{
ret = PTR_ERR(device);
goto ERR5;
}
}
// 自动创建设备节点
// 注册字符设备驱动
major = register_chrdev(0, CNAME, &fops);
if (major < 0)
{
printk("register chrdev is error\n");
return -EIO;
}
printk("major = %d\n", major); // 打印主设备号的值
// 向上层提交目录信息
cls = class_create(THIS_MODULE, CNAME);
if (IS_ERR(cls))
{
return PTR_ERR(cls);
}
// 向上层提交设备节点信息
device = device_create(cls, NULL, MKDEV(major, 0), NULL, CNAME);
if (IS_ERR(device))
{
return PTR_ERR(device);
}
//
// rcc物理地址映射
rcc_virt = ioremap(RCC_MP_AHB4ENSETR_PHY, 4);
if (rcc_virt == NULL)
{
printk("rcc ioremap is error\n");
return -EIO;
}
// GPIOE组寄存器物理地址映射
gpioe_virt = ioremap(GPIOE, sizeof(gpio_t));
if (gpioe_virt == NULL)
{
printk("gpioe ioremap is error\n");
return -EIO;
}
// GPIOF组寄存器物理地址映射
gpiof_virt = ioremap(GPIOF, sizeof(gpio_t));
if (gpiof_virt == NULL)
{
printk("gpiof ioremap is error\n");
return -EIO;
}
// LED1灯初始化 PE10
*rcc_virt |= (0x1 << 4); // 使能GPIOE组控制器
gpioe_virt->MODER &= (~(0x3 << 20)); // 设置PE10引脚为输出模式
gpioe_virt->MODER |= (0x1 << 20);
gpioe_virt->ODR &= (~(0x1 << 10)); // 设置PE10引脚输出低电平
// LED2灯初始化 PF10
*rcc_virt |= (0x1 << 5); // 使能GPIOF组控制器
gpiof_virt->MODER &= (~(0x3 << 20)); // 设置PF10引脚为输出模式
gpiof_virt->MODER |= (0x1 << 20);
gpiof_virt->ODR &= (~(0x1 << 10)); // 设置PF10引脚输出低电平
// LED3灯初始化 PE8
gpioe_virt->MODER &= (~(0x3 << 16)); // 设置PE8引脚为输出模式
gpioe_virt->MODER |= (0x1 << 16);
gpioe_virt->ODR &= (~(0x1 << 8)); // 设置PE8引脚输出低电平
return 0;
return 0; //!!!!!!!!!!!!!!!!!!
ERR5:
// 创建三个设备节点时,第一个设备节点和第二个设备节点创建成功,第三个设备节点创建失败
// 需要将第一个设备节点和第二个设备节点创建成功,需要进行释放
for (--i; i >= 0; i--)
{
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
ERR4:
cdev_del(cdev);
ERR3:
unregister_chrdev_region(MKDEV(major, minor), count);
ERR2:
kfree(cdev);
ERR1:
return ret;
}
// 出口
static void __exit demo_exit(void)
{
int i = 0;
for (i = 0; i < count; i++)
{
device_destroy(cls, MKDEV(major, i));
}
class_destroy(cls);
cdev_del(cdev);
unregister_chrdev_region(MKDEV(major, minor), count);
kfree(cdev);
// 取消地址映射
iounmap(rcc_virt);
iounmap(gpioe_virt);
iounmap(gpiof_virt);
// 注销字符设备驱动
unregister_chrdev(major, CNAME);
}
module_init(demo_init); // 指定入口地址
module_exit(demo_exit); // 指定出口地址
MODULE_LICENSE("GPL"); // 遵循GPL协议
test.c
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
int main(int argc, const char *argv[])
{
int fd = -1;
char buf[128] = {};
fd = open("/dev/myled",O_RDWR);
if(fd == -1){
perror("open is error");
return -1;
}
while(1)
{
buf[0] = 0;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
buf[1] = 1;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
buf[1] = 0;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
buf[0] = 1;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
buf[1] = 1;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
buf[1] = 0;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
buf[0] = 2;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
buf[1] = 1;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
buf[1] = 0;
write(fd,buf,sizeof(buf)); //将用户空间中buf中的内容,写入到内核空间kbuf
sleep(1);
}
close(fd);
return 0;
}
test.h
#ifndef __MYLED_H__
#define __MYLED_H__
#define RCC_MP_AHB4ENSETR_PHY 0x50000A28
enum{
LED1,
LED2,
LED3,
};
typedef struct {
volatile unsigned int MODER; // 0x00
volatile unsigned int OTYPER; // 0x04
volatile unsigned int OSPEEDR; // 0x08
volatile unsigned int PUPDR; // 0x0C
volatile unsigned int IDR; // 0x10
volatile unsigned int ODR; // 0x14
volatile unsigned int BSRR; // 0x18
volatile unsigned int LCKR; // 0x1C
volatile unsigned int AFRL; // 0x20
volatile unsigned int AFRH; // 0x24
volatile unsigned int BRR; // 0x28
volatile unsigned int res;
volatile unsigned int SECCFGR; // 0x30
}gpio_t;
#define GPIOE (0x50006000)
#define GPIOF (0x50007000)
#endif
不足之处:
1.分步注册字符设备驱动后是否需要再搞一次自动创建设备节点,再搞一次是否有意义?
2.如何获取串口输入的内容并将其存储在容器中传输到主机?