OpenCV单通道图像按像素成倍比例放大(无高斯平滑处理)

OpenCV中的resize函数可以对图像做任意比例的放大(/缩小)处理,该处理过程会对图像做高斯模糊化以保证图像在进行放大(/缩小)后尽可能保留源图像所展现的具体内容(消除固定频率插值/采样带来的香农采样信息损失),但在有些场景中该方法不适用,如:部分应用场景只为了展现图像具体像素的色彩信息,则其就不需要对具体输入的图像做高斯平滑处理,则此场景需要自行实现,实现代码如下:

python 复制代码
def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

与OpenCV自带的resize函数放大对比简易比较代码如下:

python 复制代码
import numpy as np
import cv2

def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

# 随机产生一张单通道图像
img = np.random.rand(80, 120)
img = (img * 255).astype(np.uint8)
cv2.imshow("img", img)

# 设置缩放比例
RATIO = 8

# 按具体像素位放大
img_enlarge_xN_without_gauss = enlarge_without_gauss(img, RATIO)
cv2.imshow("enlarge_xN_without_gauss", img_enlarge_xN_without_gauss)

# 使用opencv自带函数resize放大
h, w = img.shape
img_resize_xN = cv2.resize(img, (w*RATIO, h*RATIO))
cv2.imshow("resize_xN", img_resize_xN)

cv2.waitKey(0)

随机产生的原图如下:

按像素放大效果(设置的8倍):

使用opencv resize函数放大(设置的8倍):

相关推荐
撞南墙者1 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
柳鲲鹏2 小时前
OpenCV视频防抖源码及编译脚本
人工智能·opencv·计算机视觉
jndingxin2 小时前
OpenCV视觉分析之目标跟踪(8)目标跟踪函数CamShift()使用
人工智能·opencv·目标跟踪
ctrey_13 小时前
2024-11-1 学习人工智能的Day20 openCV(2)
人工智能·opencv·学习
绕灵儿14 小时前
OpenCV通过指针裁剪图像
人工智能·opencv·计算机视觉
决战春招19 小时前
人工智能之人脸识别(人脸采集人脸识别)
人工智能·opencv·学习·计算机视觉
千秋1000021 小时前
OpenCV—calcHist()函数
人工智能·opencv·计算机视觉
爱写代码的小朋友21 小时前
使用 Python 和 OpenCV 实现实时人脸识别
开发语言·python·opencv
小负不负1 天前
使用kalibr_calibration标定相机(realsense)和imu(h7min)
数码相机·opencv·计算机视觉
凤枭香1 天前
python opencv灰度变换
图像处理·人工智能·python·opencv