OpenCV单通道图像按像素成倍比例放大(无高斯平滑处理)

OpenCV中的resize函数可以对图像做任意比例的放大(/缩小)处理,该处理过程会对图像做高斯模糊化以保证图像在进行放大(/缩小)后尽可能保留源图像所展现的具体内容(消除固定频率插值/采样带来的香农采样信息损失),但在有些场景中该方法不适用,如:部分应用场景只为了展现图像具体像素的色彩信息,则其就不需要对具体输入的图像做高斯平滑处理,则此场景需要自行实现,实现代码如下:

python 复制代码
def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

与OpenCV自带的resize函数放大对比简易比较代码如下:

python 复制代码
import numpy as np
import cv2

def enlarge_without_gauss(img, ratio:int):
    h,w = img.shape
    img_x_ratio = np.zeros((img.shape[0]*ratio, img.shape[1]*ratio), dtype=np.uint8)
    for h in range(img.shape[0]):
        for w in range(img.shape[1]):
            img_x_ratio[h*ratio:h*ratio+ratio, w*ratio:w*ratio+ratio] = img[h,w]
    return img_x_ratio

# 随机产生一张单通道图像
img = np.random.rand(80, 120)
img = (img * 255).astype(np.uint8)
cv2.imshow("img", img)

# 设置缩放比例
RATIO = 8

# 按具体像素位放大
img_enlarge_xN_without_gauss = enlarge_without_gauss(img, RATIO)
cv2.imshow("enlarge_xN_without_gauss", img_enlarge_xN_without_gauss)

# 使用opencv自带函数resize放大
h, w = img.shape
img_resize_xN = cv2.resize(img, (w*RATIO, h*RATIO))
cv2.imshow("resize_xN", img_resize_xN)

cv2.waitKey(0)

随机产生的原图如下:

按像素放大效果(设置的8倍):

使用opencv resize函数放大(设置的8倍):

相关推荐
深蓝海拓17 小时前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
滨HI019 小时前
C++ opencv简化轮廓
开发语言·c++·opencv
技术支持者python,php3 天前
训练模型,物体识别(opencv)
人工智能·opencv·计算机视觉
深蓝海拓3 天前
OpenCV学习笔记之:调整ORB算法的参数以适应不同的图像
笔记·opencv·学习
Mrliu__3 天前
Opencv(十六) : 图像边缘检测
人工智能·opencv·计算机视觉
柳鲲鹏3 天前
OpenCV:文件视频防抖,python版
python·opencv·音视频
千里飞刀客4 天前
aruco位姿检测
人工智能·opencv·计算机视觉
weixin_457760004 天前
OpenCV 图像处理基础算法详解(一)
图像处理·opencv·算法
扶尔魔ocy5 天前
【QT opencv】手动去噪--网格化获取区域坐标
开发语言·qt·opencv
江河地笑5 天前
opencv、cmake、vcpkg
人工智能·opencv·计算机视觉