P1579 哥德巴赫猜想(升级版)Python 埃拉托斯特尼筛法

哥德巴赫猜想(升级版)

题目背景

1742 年 6 月 7 日,哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于 9 9 9 的奇数都可以表示成 3 3 3 个质数之和。质数是指除了 1 1 1 和本身之外没有其他约数的数,如 2 2 2 和 11 11 11 都是质数,而 6 6 6 不是质数,因为 6 6 6 除了约数 1 1 1 和 6 6 6 之外还有约数 2 2 2 和 3 3 3。需要特别说明的是 1 1 1 不是质数。

这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。

从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。

题目描述

现在请你编一个程序验证哥德巴赫猜想。

先给出一个奇数 n n n,要求输出 3 3 3 个质数,这 3 3 3 个质数之和等于输入的奇数。

输入格式

仅有一行,包含一个正奇数 n n n,其中 9 < n < 20000 9 < n < 20000 9<n<20000。

输出格式

仅有一行,输出 3 3 3 个质数,这 3 3 3 个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。

样例 #1

样例输入 #1

复制代码
2009

样例输出 #1

复制代码
3 3 2003

直接判断素数的方法是会超时的。

使用埃拉托斯特尼筛法,把素数都选出来,再加和

python 复制代码
n = int(input())

def erato(n):
    prime = [True for i in range(n+1)]
    p = 2
    while p**2<=n:
        if prime[p] == True:
            for i in range(p**2,n+1,p):
                prime[i] = False
        p+=1
    s = []
    for i in range(2,n+1):
        if prime[i]:
            s.append(i)
    return s
s = erato(n)
temp = 0
for i in s:
    for j in s:
        for k in s:
            if i+j+k==n:
                a,b,c = i,j,k
                temp = 1
                break
        if temp == 1:
            break
    if temp == 1:
        break
print(a,b)
相关推荐
嵌入式进阶行者2 分钟前
【算法】深度优先搜索实例:华为OD机考双机位A卷- 中庸行者
c++·算法·华为od·深度优先
a3535413826 分钟前
参数化曲线弧长公式推导
算法
不知名XL25 分钟前
day27 贪心算法 part05
算法·贪心算法
Tisfy30 分钟前
LeetCode 3047.求交集区域内的最大正方形面积:2层循环暴力枚举
算法·leetcode·题解·模拟·枚举·几何
junziruruo1 小时前
t-SNE可视化降维技术(以FMTrack频率感知与多专家融合文章中的内容为例)
人工智能·算法
藦卡机器人1 小时前
自动焊接机器人的核心技术要求与标准
人工智能·算法·机器人
2501_940315262 小时前
【无标题】1.17给定一个数将其转换为任意一个进制数(用栈的方法)
开发语言·c++·算法
栈与堆2 小时前
LeetCode 21 - 合并两个有序链表
java·数据结构·python·算法·leetcode·链表·rust
鹿角片ljp2 小时前
力扣7.整数反转-从基础到边界条件
算法·leetcode·职场和发展
java修仙传2 小时前
力扣hot100:前K个高频元素
算法·leetcode·职场和发展