P1579 哥德巴赫猜想(升级版)Python 埃拉托斯特尼筛法

哥德巴赫猜想(升级版)

题目背景

1742 年 6 月 7 日,哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:任何一个大于 9 9 9 的奇数都可以表示成 3 3 3 个质数之和。质数是指除了 1 1 1 和本身之外没有其他约数的数,如 2 2 2 和 11 11 11 都是质数,而 6 6 6 不是质数,因为 6 6 6 除了约数 1 1 1 和 6 6 6 之外还有约数 2 2 2 和 3 3 3。需要特别说明的是 1 1 1 不是质数。

这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。

从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。

题目描述

现在请你编一个程序验证哥德巴赫猜想。

先给出一个奇数 n n n,要求输出 3 3 3 个质数,这 3 3 3 个质数之和等于输入的奇数。

输入格式

仅有一行,包含一个正奇数 n n n,其中 9 < n < 20000 9 < n < 20000 9<n<20000。

输出格式

仅有一行,输出 3 3 3 个质数,这 3 3 3 个质数之和等于输入的奇数。相邻两个质数之间用一个空格隔开,最后一个质数后面没有空格。如果表示方法不唯一,请输出第一个质数最小的方案,如果第一个质数最小的方案不唯一,请输出第一个质数最小的同时,第二个质数最小的方案。

样例 #1

样例输入 #1

复制代码
2009

样例输出 #1

复制代码
3 3 2003

直接判断素数的方法是会超时的。

使用埃拉托斯特尼筛法,把素数都选出来,再加和

python 复制代码
n = int(input())

def erato(n):
    prime = [True for i in range(n+1)]
    p = 2
    while p**2<=n:
        if prime[p] == True:
            for i in range(p**2,n+1,p):
                prime[i] = False
        p+=1
    s = []
    for i in range(2,n+1):
        if prime[i]:
            s.append(i)
    return s
s = erato(n)
temp = 0
for i in s:
    for j in s:
        for k in s:
            if i+j+k==n:
                a,b,c = i,j,k
                temp = 1
                break
        if temp == 1:
            break
    if temp == 1:
        break
print(a,b)
相关推荐
CoovallyAIHub1 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub2 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI19 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v21 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法