scaling laws for neural language models

关于scaling law 的正确认识 - 知乎最近scaling law 成了最大的热词。一般的理解就是,想干大模型,清洗干净数据,然后把数据tokens量堆上来,然后搭建一个海量H100的集群,干就完了。训练模型不需要啥技巧,模型结构也没啥好设计的,对算法精度影响...https://zhuanlan.zhihu.com/p/684955373对于基于transformer的语言模型,假设模型的参数量为N,数据集tokens个数为D(token数),那么模型的计算量C约为6ND,模型的计算量C一定后,模型的性能即精度就基本确定。语言模型的影响因素只有N和D,跟模型的具体结构诸如层数,深度,attention头个数基本无关,相关性非常小,性能在2%的区间内。

scaling laws的前提是标准的transformer结构。

相关推荐
EkihzniY3 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通3 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾4 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习
kaikaile19954 小时前
基于遗传算法的车辆路径问题(VRP)解决方案MATLAB实现
开发语言·人工智能·matlab
lpfasd1234 小时前
第1章_LangGraph的背景与设计哲学
人工智能
Aevget5 小时前
界面组件Kendo UI for React 2025 Q3亮点 - AI功能全面提升
人工智能·react.js·ui·界面控件·kendo ui·ui开发
桜吹雪5 小时前
LangChain.js/DeepAgents可观测性
javascript·人工智能
&&Citrus5 小时前
【杂谈】SNNU公共计算平台:深度学习服务器配置与远程开发指北
服务器·人工智能·vscode·深度学习·snnu
乌恩大侠5 小时前
Spark 机器上修改缓冲区大小
人工智能·usrp
STLearner5 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘