scaling laws for neural language models

关于scaling law 的正确认识 - 知乎最近scaling law 成了最大的热词。一般的理解就是,想干大模型,清洗干净数据,然后把数据tokens量堆上来,然后搭建一个海量H100的集群,干就完了。训练模型不需要啥技巧,模型结构也没啥好设计的,对算法精度影响...https://zhuanlan.zhihu.com/p/684955373对于基于transformer的语言模型,假设模型的参数量为N,数据集tokens个数为D(token数),那么模型的计算量C约为6ND,模型的计算量C一定后,模型的性能即精度就基本确定。语言模型的影响因素只有N和D,跟模型的具体结构诸如层数,深度,attention头个数基本无关,相关性非常小,性能在2%的区间内。

scaling laws的前提是标准的transformer结构。

相关推荐
沫儿笙3 分钟前
安川YASKAWA焊接机器人电池拖盘焊接节气
人工智能·机器人
iiiiii114 分钟前
【论文阅读笔记】多实例学习方法 Diverse Density(DD):在特征空间中寻找正概念的坐标
论文阅读·人工智能·笔记·机器学习·ai·学习方法·多实例学习
RPA机器人就选八爪鱼6 分钟前
RPA财务机器人:驱动财务数字化转型的核心引擎
大数据·运维·人工智能·机器人·rpa
tianyuanwo9 分钟前
从机器人到软件管理:“具身”思维如何重塑我们的世界
人工智能·管理·具身
长不大的蜡笔小新23 分钟前
手写数字识别:从零搭建神经网络
人工智能·python·tensorflow
z***y8621 小时前
机器学习重点
人工智能·机器学习
AI人工智能+1 小时前
文档抽取技术:通过OCR、NLP和机器学习技术,将非结构化的合同、发票等文档转化为结构化数据
人工智能·计算机视觉·nlp·ocr·文档抽取
johnny2331 小时前
AI IDE/插件(三):Task Master、DeepCode
ide·人工智能
ConardLi1 小时前
前端程序员原地失业?全面实测 Gemini 3.0,附三个免费使用方法!
前端·人工智能·后端
w***Q3501 小时前
深度学习博客
人工智能·深度学习