scaling laws for neural language models

关于scaling law 的正确认识 - 知乎最近scaling law 成了最大的热词。一般的理解就是,想干大模型,清洗干净数据,然后把数据tokens量堆上来,然后搭建一个海量H100的集群,干就完了。训练模型不需要啥技巧,模型结构也没啥好设计的,对算法精度影响...https://zhuanlan.zhihu.com/p/684955373对于基于transformer的语言模型,假设模型的参数量为N,数据集tokens个数为D(token数),那么模型的计算量C约为6ND,模型的计算量C一定后,模型的性能即精度就基本确定。语言模型的影响因素只有N和D,跟模型的具体结构诸如层数,深度,attention头个数基本无关,相关性非常小,性能在2%的区间内。

scaling laws的前提是标准的transformer结构。

相关推荐
Baihai_IDP7 分钟前
vec2text 技术已开源!一定条件下,文本嵌入向量可“近乎完美地”还原
人工智能·面试·llm
江太翁11 分钟前
Pytorch torch
人工智能·pytorch·python
拓端研究室27 分钟前
专题:2025即时零售与各类人群消费行为洞察报告|附400+份报告PDF、原数据表汇总下载
大数据·人工智能
网安INF31 分钟前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
Despacito0o32 分钟前
ESP32-s3摄像头驱动开发实战:从零搭建实时图像显示系统
人工智能·驱动开发·嵌入式硬件·音视频·嵌入式实时数据库
Leinwin34 分钟前
微软发布突破性医疗AI系统
人工智能·microsoft
机器之心35 分钟前
刚刚,Ilya Sutskever宣布自任CEO:联创被Meta挖走了
人工智能
William.csj1 小时前
Pytorch——查看模型的推理引擎
人工智能·pytorch
NAGNIP1 小时前
Transformer注意力机制——MHA&MQA&GQA
人工智能·算法