scaling laws for neural language models

关于scaling law 的正确认识 - 知乎最近scaling law 成了最大的热词。一般的理解就是,想干大模型,清洗干净数据,然后把数据tokens量堆上来,然后搭建一个海量H100的集群,干就完了。训练模型不需要啥技巧,模型结构也没啥好设计的,对算法精度影响...https://zhuanlan.zhihu.com/p/684955373对于基于transformer的语言模型,假设模型的参数量为N,数据集tokens个数为D(token数),那么模型的计算量C约为6ND,模型的计算量C一定后,模型的性能即精度就基本确定。语言模型的影响因素只有N和D,跟模型的具体结构诸如层数,深度,attention头个数基本无关,相关性非常小,性能在2%的区间内。

scaling laws的前提是标准的transformer结构。

相关推荐
renhongxia13 分钟前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归
民乐团扒谱机11 分钟前
【AI笔记】精密光时频传递技术核心内容总结
人工智能·算法·光学频率梳
不惑_23 分钟前
通俗理解GAN的训练过程
人工智能·神经网络·生成对抗网络
OpenCSG1 小时前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌1 小时前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能
cskywit1 小时前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
无名修道院2 小时前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
自可乐2 小时前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus
Loo国昌2 小时前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
XX風2 小时前
3.2K-means
人工智能·算法·kmeans