力扣由浅至深 每日一题.23 Nim 游戏

不要美化自己当初没有选择的那一条路

------ 24.4.7

Nim 游戏

你和你的朋友,两个人一起玩 Nim 游戏

  • 桌子上有一堆石头。
  • 你们轮流进行自己的回合, 你作为先手
  • 每一回合,轮到的人拿掉 1 - 3 块石头。
  • 拿掉最后一块石头的人就是获胜者。

假设你们每一步都是最优解。请编写一个函数,来判断你是否可以在给定石头数量为 n 的情况下赢得游戏。如果可以赢,返回 true;否则,返回 false

示例 1:

复制代码
输入:n = 4
输出:false 
解释:以下是可能的结果:
1. 移除1颗石头。你的朋友移走了3块石头,包括最后一块。你的朋友赢了。
2. 移除2个石子。你的朋友移走2块石头,包括最后一块。你的朋友赢了。
3.你移走3颗石子。你的朋友移走了最后一块石头。你的朋友赢了。
在所有结果中,你的朋友是赢家。

示例 2:

复制代码
输入:n = 1
输出:true

示例 3:

复制代码
输入:n = 2
输出:true

提示:

  • 1 <= n <= 231 - 1

数学推理

思路与算法

让我们考虑一些小例子。显而易见的是,如果石头堆中只有一块、两块、或是三块石头,那么在你的回合,你就可以把全部石子拿走,从而在游戏中取胜;如果堆中恰好有四块石头,你就会失败。因为在这种情况下不管你取走多少石头,总会为你的对手留下几块,他可以将剩余的石头全部取完,从而他可以在游戏中打败你。因此,要想获胜,在你的回合中,必须避免石头堆中的石子数为 4 的情况。

我们继续推理,假设当前堆里只剩下五块、六块、或是七块石头,你可以控制自己拿取的石头数,总是恰好给你的对手留下四块石头,使他输掉这场比赛。但是如果石头堆里有八块石头,你就不可避免地会输掉,因为不管你从一堆石头中挑出一块、两块还是三块,你的对手都可以选择三块、两块或一块,以确保在再一次轮到你的时候,你会面对四块石头。显然我们继续推理,可以看到它会以相同的模式不断重复 n=4,8,12,16,...,基本可以看出如果堆里的石头数目为 4 的倍数时,你一定会输掉游戏。

如果总的石头数目为 4 的倍数时,因为无论你取多少石头,对方总有对应的取法,让剩余的石头的数目继续为 4 的倍数。对于你或者你的对手取石头时,显然最优的选择是当前己方取完石头后,让剩余的石头的数目为 4 的倍数。假设当前的石头数目为 x,如果 x 为 4 的倍数时,则此时你必然会输掉游戏;如果 x 不为 4 的倍数时,则此时你只需要取走 x mod 4个石头时,则剩余的石头数目必然为 4 的倍数,从而对手会输掉游戏。

java 复制代码
class Solution {
    public boolean canWinNim(int n) {
        return n % 4 != 0;
    }
}

复杂度分析

  • 时间复杂度:O(1)。

  • 空间复杂度:O(1)。

相关推荐
菜鸟233号19 分钟前
力扣213 打家劫舍II java实现
java·数据结构·算法·leetcode
狐5732 分钟前
2026-01-18-LeetCode刷题笔记-1895-最大的幻方
笔记·算法·leetcode
Q741_1471 小时前
C++ 队列 宽度优先搜索 BFS 力扣 662. 二叉树最大宽度 每日一题
c++·算法·leetcode·bfs·宽度优先
Pluchon1 小时前
硅基计划4.0 算法 动态规划进阶
java·数据结构·算法·动态规划
踩坑记录1 小时前
leetcode hot100 54.螺旋矩阵 medium
leetcode
wzf@robotics_notes1 小时前
振动控制提升 3D 打印机器性能
嵌入式硬件·算法·机器人
机器学习之心2 小时前
MATLAB基于多指标定量测定联合PCA、OPLS-DA、FA及熵权TOPSIS模型的等级预测
人工智能·算法·matlab·opls-da
Loo国昌2 小时前
【LangChain1.0】第八阶段:文档处理工程(LangChain篇)
人工智能·后端·算法·语言模型·架构·langchain
xb11322 小时前
Winforms实战项目:运动控制界面原型
算法
MicroTech20252 小时前
微算法科技(NASDAQ :MLGO)量子安全哈希(QSHA),增强量子时代的区块链安全保障
科技·算法·安全