pytorch中torch.meshgrid()函数理解及举例说明

说明:

函数的功能是生成网格,可以用于生成坐标。

函数输入:

输入两个一维tensor数据,且两个tensor数据类型相同,也可以输入三个一维tensor数据

函数输出:

输出两个tensor数据(两个tensor的行数为第一个输入张量的元素个数,列数为第二个输入张量的元素个数)或者三个tensor数据(三个tensor第一维度大小为第一个输入张量的元素个数,第二维度大小为第二个输入张量的元素个数,第三维度为第三个输入张量元素个数)

报错:

当两个输入tensor数据类型不同或维度不是一维时会报错。

结果理解:

输入两个一维张量的元素个数分别为n1,n2,则输出两个张量是二维的,且行和列个数均为n1,n2,输出第一个张量行相同(对应第一个输入张量),输出第二个张量列相同(对应第二个输入张量),其中第一个输出张量填充第一个输入张量中的元素,各行元素相同 ;第二个输出张量填充第二个输入张量中的元素,各列元素相同

若输入是三个一维张量,元素个数分别为n1,n2,n3,则输出的三个张量都是三维的,且输出的三个张量的三个维度均相等,分别为n1,n2,n3。

输入为两个张量:

python 复制代码
import torch
import torch.nn as nn

a1 = torch.tensor([1,3])
b1 = torch.tensor([2,4,6])
x1,y1 = torch.meshgrid(a1,b1)
print(x1)
print(y1)

输出:
tensor([[1, 1, 1],
        [3, 3, 3]])
tensor([[2, 4, 6],
        [2, 4, 6]])

输入为三个张量:

python 复制代码
import torch
import torch.nn as nn

a2 = torch.tensor([1,3])
b2 = torch.tensor([2,4,6])
c2 = torch.tensor([7,8,9,10])
x2,y2,z2 = torch.meshgrid(a2,b2,c2)
print(x2)
print(x2.shape)
print(y2)
print(y2.shape)
print(z2)
print(z2.shape)

输出:
tensor([[[1, 1, 1, 1],
         [1, 1, 1, 1],
         [1, 1, 1, 1]],

        [[3, 3, 3, 3],
         [3, 3, 3, 3],
         [3, 3, 3, 3]]])
torch.Size([2, 3, 4])
tensor([[[2, 2, 2, 2],
         [4, 4, 4, 4],
         [6, 6, 6, 6]],

        [[2, 2, 2, 2],
         [4, 4, 4, 4],
         [6, 6, 6, 6]]])
torch.Size([2, 3, 4])
tensor([[[ 7,  8,  9, 10],
         [ 7,  8,  9, 10],
         [ 7,  8,  9, 10]],

        [[ 7,  8,  9, 10],
         [ 7,  8,  9, 10],
         [ 7,  8,  9, 10]]])
torch.Size([2, 3, 4])
相关推荐
逛逛GitHub36 分钟前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心1 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
aneasystone本尊3 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒4 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊14 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三14 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯15 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet17 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算17 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心17 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai