YOLOv1 模型构建与训练

相关文章

项目地址:YOLOv1 VOC 2007

笔者训练的权重地址:阿里云盘分享

10 秒文章速览

本文主要讲解了 YOLOv1 的模型构建、损失函数、模型训练

模型构建

对于模型的构建,我们不采用论文中的方案,而是使用 ResNet 模型。至于为什么,在笔者的观测下,ResNet练的训练速度明显更快

YOLOv1 模型

但在这里笔者还是贴出论文中的模型,向前辈致敬🫡

python 复制代码
# 根据原论文构建的模型
def get_YOLOv1():
    model = keras.Sequential([
        keras.layers.Conv2D(64, (7, 7), 2, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(192, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(128, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 2, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Flatten(),
        keras.layers.Dense(4096),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Dropout(rate=0.5),
        keras.layers.Dense(1470),
        keras.layers.Reshape((7, 7, 30)),
        keras.layers.Activation('sigmoid')
    ])
    model.build(input_shape=(None, 224,224, 3))

    return model

ResNet50V2 模型

使用 ResNet 作为模型,还有一个原因是 TensorFlow 提供的模型可以加载 ImageNet 数据集的训练权重

在全连接部分,我们参考论文中的构建方式,只不过将 Flatten 层改为了 GlobalAvgPool2D 层

python 复制代码
# 以 ResNet50V2 作为模型主干
ResNet = keras.applications.ResNet50V2(input_shape=(448, 448, 3), include_top=False)

# 构建全连接层部分
x = ResNet.output
x = keras.layers.GlobalAvgPool2D()(x)
x = keras.layers.Dense(4096)(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.Dropout(rate=0.5)(x)
x = keras.layers.Dense(1470)(x)
x = keras.layers.Reshape((7, 7, 30))(x)
x = keras.layers.Activation('sigmoid')(x)

model = keras.Model(ResNet.input, x)

模型训练

对于模型的训练,同样参考了论文中的方案(有意思的是笔者在训练中也使用了 TensorFlow 提供的分段衰退的方法,但效果似乎不如下面这种简单粗暴的方法)

python 复制代码
optimizer = keras.optimizers.SGD(learning_rate=0.0055, momentum=0.9, weight_decay=0.0005)
model.compile(optimizer=optimizer, loss=get_loss)

model.fit(train_set, epochs=1)
model.optimizer.learning_rate.assign(0.01)
model.fit(train_set, epochs=75)
model.optimizer.learning_rate.assign(0.001)
model.fit(train_set, epochs=30)
model.optimizer.learning_rate.assign(0.0001)
model.fit(train_set, epochs=30)

如果在不加载预训练权重的情况下,这里也给出笔者的训练方案

使用 Adam 优化器,weight_decay 设置为0.0005,训练步骤如下

  • 以0.0003为学习率,训练75个周期
  • 以0.0001为学习率,训练50个周期
  • 以0.00005为学习率,训练25个周期
  • 以0.00003为学习率,训练25个周期
相关推荐
-曾牛3 分钟前
【LangChain4j快速入门】5分钟用Java玩转GPT-4o-mini,Spring Boot整合实战!| 附源码
java·开发语言·人工智能·spring boot·ai·chatgpt
token-go6 分钟前
[特殊字符] KoalaAI 1.0.23 震撼升级:GPT-4.1免费畅享,AI革命触手可及!
人工智能
云卓SKYDROID33 分钟前
无人机避障与目标识别技术分析!
人工智能·无人机·科普·高科技·云卓科技·激光避障
chuangfumao40 分钟前
解读《人工智能指数报告 2025》:洞察 AI 发展新态势
人工智能·搜索引擎·百度
可爱の小公举1 小时前
自然语言处理(NLP)领域大图
人工智能·自然语言处理
qq_436962181 小时前
AI数据分析的优势分析
人工智能·数据挖掘·数据分析
Vodka~1 小时前
深度学习——数据处理脚本(基于detectron2框架)
人工智能·windows·深度学习
爱的叹息2 小时前
关于 传感器 的详细解析,涵盖定义、分类、工作原理、常见类型、应用领域、技术挑战及未来趋势,结合实例帮助理解其核心概念
人工智能·机器人
恶霸不委屈2 小时前
突破精度极限!基于DeepSeek的无人机航拍图像智能校准系统技术解析
人工智能·python·无人机·deepseek