YOLOv1 模型构建与训练

相关文章

项目地址:YOLOv1 VOC 2007

笔者训练的权重地址:阿里云盘分享

10 秒文章速览

本文主要讲解了 YOLOv1 的模型构建、损失函数、模型训练

模型构建

对于模型的构建,我们不采用论文中的方案,而是使用 ResNet 模型。至于为什么,在笔者的观测下,ResNet练的训练速度明显更快

YOLOv1 模型

但在这里笔者还是贴出论文中的模型,向前辈致敬🫡

python 复制代码
# 根据原论文构建的模型
def get_YOLOv1():
    model = keras.Sequential([
        keras.layers.Conv2D(64, (7, 7), 2, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(192, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(128, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 2, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Flatten(),
        keras.layers.Dense(4096),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Dropout(rate=0.5),
        keras.layers.Dense(1470),
        keras.layers.Reshape((7, 7, 30)),
        keras.layers.Activation('sigmoid')
    ])
    model.build(input_shape=(None, 224,224, 3))

    return model

ResNet50V2 模型

使用 ResNet 作为模型,还有一个原因是 TensorFlow 提供的模型可以加载 ImageNet 数据集的训练权重

在全连接部分,我们参考论文中的构建方式,只不过将 Flatten 层改为了 GlobalAvgPool2D 层

python 复制代码
# 以 ResNet50V2 作为模型主干
ResNet = keras.applications.ResNet50V2(input_shape=(448, 448, 3), include_top=False)

# 构建全连接层部分
x = ResNet.output
x = keras.layers.GlobalAvgPool2D()(x)
x = keras.layers.Dense(4096)(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.Dropout(rate=0.5)(x)
x = keras.layers.Dense(1470)(x)
x = keras.layers.Reshape((7, 7, 30))(x)
x = keras.layers.Activation('sigmoid')(x)

model = keras.Model(ResNet.input, x)

模型训练

对于模型的训练,同样参考了论文中的方案(有意思的是笔者在训练中也使用了 TensorFlow 提供的分段衰退的方法,但效果似乎不如下面这种简单粗暴的方法)

python 复制代码
optimizer = keras.optimizers.SGD(learning_rate=0.0055, momentum=0.9, weight_decay=0.0005)
model.compile(optimizer=optimizer, loss=get_loss)

model.fit(train_set, epochs=1)
model.optimizer.learning_rate.assign(0.01)
model.fit(train_set, epochs=75)
model.optimizer.learning_rate.assign(0.001)
model.fit(train_set, epochs=30)
model.optimizer.learning_rate.assign(0.0001)
model.fit(train_set, epochs=30)

如果在不加载预训练权重的情况下,这里也给出笔者的训练方案

使用 Adam 优化器,weight_decay 设置为0.0005,训练步骤如下

  • 以0.0003为学习率,训练75个周期
  • 以0.0001为学习率,训练50个周期
  • 以0.00005为学习率,训练25个周期
  • 以0.00003为学习率,训练25个周期
相关推荐
cooldream200939 分钟前
华为云Flexus+DeepSeek征文|基于华为云Flexus X和DeepSeek-R1打造个人知识库问答系统
人工智能·华为云·dify
Blossom.1184 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn5 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器
DFminer5 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic5 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
海盗儿6 小时前
Attention Is All You Need (Transformer) 以及Transformer pytorch实现
pytorch·深度学习·transformer
GIS小天6 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU6 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec6 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#