YOLOv1 模型构建与训练

相关文章

项目地址:YOLOv1 VOC 2007

笔者训练的权重地址:阿里云盘分享

10 秒文章速览

本文主要讲解了 YOLOv1 的模型构建、损失函数、模型训练

模型构建

对于模型的构建,我们不采用论文中的方案,而是使用 ResNet 模型。至于为什么,在笔者的观测下,ResNet练的训练速度明显更快

YOLOv1 模型

但在这里笔者还是贴出论文中的模型,向前辈致敬🫡

python 复制代码
# 根据原论文构建的模型
def get_YOLOv1():
    model = keras.Sequential([
        keras.layers.Conv2D(64, (7, 7), 2, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(192, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(128, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(256, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.MaxPool2D((2, 2), 2),

        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(512, (1, 1), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 2, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Conv2D(1024, (3, 3), 1, 'same'),
        keras.layers.LeakyReLU(0.1),

        keras.layers.Flatten(),
        keras.layers.Dense(4096),
        keras.layers.LeakyReLU(0.1),
        keras.layers.Dropout(rate=0.5),
        keras.layers.Dense(1470),
        keras.layers.Reshape((7, 7, 30)),
        keras.layers.Activation('sigmoid')
    ])
    model.build(input_shape=(None, 224,224, 3))

    return model

ResNet50V2 模型

使用 ResNet 作为模型,还有一个原因是 TensorFlow 提供的模型可以加载 ImageNet 数据集的训练权重

在全连接部分,我们参考论文中的构建方式,只不过将 Flatten 层改为了 GlobalAvgPool2D 层

python 复制代码
# 以 ResNet50V2 作为模型主干
ResNet = keras.applications.ResNet50V2(input_shape=(448, 448, 3), include_top=False)

# 构建全连接层部分
x = ResNet.output
x = keras.layers.GlobalAvgPool2D()(x)
x = keras.layers.Dense(4096)(x)
x = keras.layers.LeakyReLU(0.1)(x)
x = keras.layers.Dropout(rate=0.5)(x)
x = keras.layers.Dense(1470)(x)
x = keras.layers.Reshape((7, 7, 30))(x)
x = keras.layers.Activation('sigmoid')(x)

model = keras.Model(ResNet.input, x)

模型训练

对于模型的训练,同样参考了论文中的方案(有意思的是笔者在训练中也使用了 TensorFlow 提供的分段衰退的方法,但效果似乎不如下面这种简单粗暴的方法)

python 复制代码
optimizer = keras.optimizers.SGD(learning_rate=0.0055, momentum=0.9, weight_decay=0.0005)
model.compile(optimizer=optimizer, loss=get_loss)

model.fit(train_set, epochs=1)
model.optimizer.learning_rate.assign(0.01)
model.fit(train_set, epochs=75)
model.optimizer.learning_rate.assign(0.001)
model.fit(train_set, epochs=30)
model.optimizer.learning_rate.assign(0.0001)
model.fit(train_set, epochs=30)

如果在不加载预训练权重的情况下,这里也给出笔者的训练方案

使用 Adam 优化器,weight_decay 设置为0.0005,训练步骤如下

  • 以0.0003为学习率,训练75个周期
  • 以0.0001为学习率,训练50个周期
  • 以0.00005为学习率,训练25个周期
  • 以0.00003为学习率,训练25个周期
相关推荐
陈橘又青18 分钟前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
松岛雾奈.23025 分钟前
深度学习--TensorFlow框架使用
深度学习·tensorflow·neo4j
中杯可乐多加冰36 分钟前
逻辑控制案例详解|基于smardaten实现OA一体化办公系统逻辑交互
人工智能·深度学习·低代码·oa办公·无代码·一体化平台·逻辑控制
IT_陈寒1 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
龙智DevSecOps解决方案1 小时前
Perforce《2025游戏技术现状报告》Part 1:游戏引擎技术的广泛影响以及生成式AI的成熟之路
人工智能·unity·游戏引擎·游戏开发·perforce
大佬,救命!!!1 小时前
更换适配python版本直接进行机器学习深度学习等相关环境配置(非仿真环境)
人工智能·python·深度学习·机器学习·学习笔记·详细配置
星空的资源小屋1 小时前
VNote:程序员必备Markdown笔记神器
javascript·人工智能·笔记·django
梵得儿SHI1 小时前
(第七篇)Spring AI 基础入门总结:四层技术栈全景图 + 三大坑根治方案 + RAG 进阶预告
java·人工智能·spring·springai的四大核心能力·向量维度·prompt模板化·向量存储检索
亚马逊云开发者1 小时前
Amazon Bedrock助力飞书深诺电商广告分类
人工智能
2301_823438021 小时前
解析论文《复杂海上救援环境中无人机群的双阶段协作路径规划与任务分配》
人工智能·算法·无人机