论文阅读:AdaBins: Depth Estimation using Adaptive Bins

Motivation

  • 信息的全局处理会帮助提高整体深度估计。
  • 提出的AdaBins预测的bin中心集中在较小的深度值附近,对于深度值范围更广的图像,分布广泛。
  • Fu et al. 发现将深度回归任务转化为分类任务可以提升效果,将深度范围分成固定数量的bins。本文则解决了原始方法的多个限制:
    1. 计算根据输入场景的特征动态变化的自适应箱。
    2. 分类方法导致深度值的离散化,导致视觉质量差,深度不连续明显,论文提出预测最终的深度值作为bin中心的线性组合。
    3. 以高分辨率全局计算信息,而不是主要是在低分辨率的瓶颈部分。

AdaBins design

  • 首先,我们采用一个适应性分箱策略把具体的深度区间 D = ( d m i n , d m a x ) D=(d_{min},d_{max}) D=(dmin,dmax)分成N bins。
  • 我们将最终深度预测为 bin 中心的线性组合,使模型能够估计平滑变化的深度值。
  • 当在空间更高分辨率的张量上使用注意力时,可以获得更好的结果。因此采用了这样的结构: Encoder, Decoder, and finally attention。
  • 由于内存限制,使用h=H/2,w=W/2的空间分辨率处理,最终的depth图像通过简单的bilinearly上采样到(H,W)。
  • AdaBins的第一个模块是miniViT.输出:1) 向量 b , 定义了它如何将深度区间D划分为输入图像。2)Range-Attention 图 R \mathcal{R} R,形状是 h × w × C h \times w \times C h×w×C, 包含了像素级深度计算信息。
  • Bin-widths: 使用MLP头和ReLU层输出N维(bin的数量)向量b' 。最后通过Softmax归一化b'
    b i = b i ′ + ϵ ∑ j = 1 N ( b j ′ + ϵ ) b_i = \frac{b'i + \epsilon}{\sum^N{j=1}(b'_j + \epsilon)} bi=∑j=1N(bj′+ϵ)bi′+ϵ
  • Range attention maps : Transformer中包含了更多的全局信息。来自转换器的output embedding (2,C+1)作用一组1x1的卷积核,并与解码器的特征卷积获得 R \mathcal{R} R。这相当于将pixel-wise 特征视为'keys', transformer output embedding相当于'queries'。
  • Hybrid regression :
    R \mathcal{R} R 通过 1 × 1 卷积层获得 N 个通道,然后通过 Softmax。每个像素每个通道的数值作为这个bin的概率,每个depth-bin-centers可以算为:
    c ( b i ) = d ( m i n ) + ( d m a x − d m i n ) ( b i / 2 + ∑ j = 1 i + 1 b j ) c(b_i) = d_(min) + (d_{max} - d_{min})(b_i/2 + \sum^{i+1}{j=1}b_j) c(bi)=d(min)+(dmax−dmin)(bi/2+∑j=1i+1bj)
    最后,对于每一个pixel, 最终的 d ~ \tilde{d} d~计算为线性组合 c ( b i ) c(b_i) c(bi),
    d ~ = ∑ k = 1 N c ( b k ) p k \tilde{d}= \sum^N
    {k=1}c(b_k)p_k d~=∑k=1Nc(bk)pk。

Loss function

  • Pixel-wise depth loss. 使用一个尺度不变损失 (SI) 的缩放版本:
  • g i = l o g d ~ i − l o g d i g_i = log \tilde{d}_i - log d_i gi=logd~i−logdi。
  • Bin-center density loss: 鼓励bin centers的分布与真实标签相同。我们将 bin 中心的集合表示为 c(b),将地面实况图像中所有深度值的集合表示为 X,并使用双向倒角损失 [9] 作为正则化器:

Reference

  1. 1\]FU H, GONG M, WANG C, et al. Deep Ordinal Regression Network for Monocular Depth Estimation\[C/OL\]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT. 2018. http://dx.doi.org/10.1109/cvpr.2018.00214. DOI:10.1109/cvpr.2018.00214.

相关推荐
一枚射手座的程序媛8 小时前
论文笔记:Bundle Recommendation and Generation with Graph Neural Networks
论文阅读
一枚射手座的程序媛8 小时前
【论文笔记】Multi-Behavior Graph Neural Networks for Recommender System
论文阅读
张较瘦_8 小时前
[论文阅读] 人工智能 + 软件工程 | Trae Agent:让AI智能体高效解决仓库级软件问题,登顶SWE-bench排行榜
论文阅读·人工智能·软件工程
ZHANG8023ZHEN8 小时前
ModeSeq论文阅读
论文阅读
张较瘦_9 小时前
[论文阅读] 人工智能 + 软件工程 | GitHub Marketplace中CI Actions的功能冗余与演化规律研究
论文阅读·人工智能·软件工程
图灵学术计算机论文辅导1 天前
提示+掩膜+注意力=Mamba三连击,跨模态任务全面超越
论文阅读·人工智能·经验分享·科技·深度学习·考研·计算机视觉
Mr Sorry1 天前
TIME WEAVER: A Conditional Time Series Generation Model论文阅读笔记
论文阅读·笔记
有Li1 天前
通过观看数百个外科手术视频课程来学习多模态表征|文献速递-医学影像算法文献分享
论文阅读·医学生
2301_803652741 天前
RLHF-V原论文阅读
论文阅读
Johan song2 天前
AR-Align-NN-2024
论文阅读·论文笔记