浅析分布式业务一致性方案

1 场景分析

现在有一种业务场景:A作为消息发送方,处理业务成功后,投递消息。B作为消息接收方,接收消息,处理业务。在这种业务场景中,我们希望A业务处理成功后,B业务也处理成功。这种抽象场景可以体现在具体业务场景:

  • 下单:用户支付成功,订单中心投递消息,物流中心发货
  • 报名:用户报名成功,活动中心投递消息,下游准备物料
  • 买券:用户支付成功,订单中心投递消息,营销中心发券

A和B作为各自独立系统,如果想要保证业务一致性,并不像单体应用那么简单。我认为从三个维度考虑,而不是单点思考这个问题:

  • 业务发送方
  • 业务消费方
  • 监控

2 业务发送方

业务发送方需要保证一件事情:当本业务处理成功后,一定可以投递成功业务消息。通常有两个方案:本地消息表、事务消息。

2.1 本地消息表

本地消息表思想是在业务表的同一个库中,引入消息表,通过数据库本地事务保证业务表和消息表操作强一致性。使用步骤:

  • 第一步:业务表和消息表强一致更新,消息状态为【待发送】
  • 第二步:发送消息至消息队列,修改为消息状态为【已发送】或【发送失败】
  • 第三步:定时任务查询X时间前【待发送】和【发送失败】消息,重新推送至消息队列

2.2 事务消息

RocketMQ事务消息特性可以满足本文业务场景,事务消息原理如下图:

事务消息使用步骤:

  • 第一步:业务方发送半消息至RocketMQ
  • 第二步:RocketMQ返回半消息发送成功结果
  • 第三步:执行业务代码
  • 第四步:业务执行成功,则提交半消息至RocketMQ,此时消息才算真正提交成功。业务执行失败,回滚半消息
  • 第五步:如果业务执行完成后,由于各种原因(例如网络原因)未返回结果,导致半消息无法确定提交还是回滚
  • 第六步:业务需要提供查询接口,RocketMQ回调这个接口,根据结果决定提交还是回滚半消息

3 业务接收方

业务接收方需要注意以下几个维度:

  • 维度一:接收到消息,如果处理成功需要告知RocketMQ消息处理成功,避免重复消息
  • 维度二:接收到消息,如果处理失败需要告知RocketMQ消息处理失败,等待重试消费
  • 维度三:因为RocketMQ重试机制存在,消息可能会被重复消费,所以必须做业务幂等

3.1 维度一

接收到消息后进行业务处理,如果处理成功则告知RocketMQ成功:

text 复制代码
public class MessageListenerImpl implements MessageListener {

    @Override
    public Action consume(Message message, ConsumeContext context) {
        boolean result = doBusiness(message);
        if(result) {
            // 业务处理成功
            return Action.CommitMessage;
        } else {
            return Action.ReconsumeLater;
        }
    }
}

3.2 维度二

3.2.1 代码编写

接收到消息后进行业务处理,如果处理则告诉RocketMQ当前消息消费失败,并希望在稍后重新尝试消费:

text 复制代码
public class MessageListenerImpl implements MessageListener {

    @Override
    public Action consume(Message message, ConsumeContext context) {
        boolean result = doBusiness(message);
        if(result) {
            return Action.CommitMessage;
        } else {
            // 业务处理失败
            return Action.ReconsumeLater;
        }
    }
}

消费者有三种方式告知RocketMQ消费失败,均会触发重试机制:

text 复制代码
public class MessageListenerImpl implements MessageListener {

    @Override
    public Action consume(Message message, ConsumeContext context) {
        boolean result = doBusiness(message);
        if(result) {
            return Action.CommitMessage;
        } else {
            // 方式一
            return Action.ReconsumeLater;
            // 方式二
            throw new RuntimeException("doBusiness fail");
            // 方式三
            return null;
        }
    }
}

3.2.2 重试机制

(1) 顺序消息

如果消费者在处理过程中失败,RocketMQ 消息队列会自动触发重试机制,每隔1秒尝试重新投递该消息。在此期间由于重试机制的运行,应用可能会遇到消息消费被暂时阻塞的现象。

(2) 无序消息

  • 无序消息类型
    • 普通消息
    • 定时消息
    • 延时消息
    • 事务消息
  • 重试次数
    • 默认16次
    • 自定义重试次数,超过16次后重试间隔均为2小时
  • 重试次数:与上一次时间间隔
    • 第1次:10秒
    • 第2次:30秒
    • 第3次:1分钟
    • 第4次:2分钟
    • 第5次:3分钟
    • 第6次:4分钟
    • 第7次:5分钟
    • 第8次:6分钟
    • 第9次:7分钟
    • 第10次:8分钟
    • 第11次:9分钟
    • 第12次:10分钟
    • 第13次:20分钟
    • 第14次:30分钟
    • 第15次:1小时
    • 第16次:2小时
  • 无序消息重试功能只有在集群消费模式下有效。广播模式下消费失败,失败消息将不会被重试,系统会继续消费下一条新消息

3.3 维度三

在计算机科学和数学中幂等(Idempotent)描述一个操作,无论执行多少次结果均相同。幂等性在分布式系统特别重要,因为这些环境中的操作可能会由于网络延迟、重试逻辑而被多次执行。如果一个操作不幂等,重复执行可能会导致错误结果。常见幂等方案:

  • 幂等表
  • 分布式锁
  • 版本控制
  • 状态机

4 监控

4.1 一个悖论

怎样保证一个工程系统的稳定性?有以下两种做法:

  • 思路1:考虑到所有意外情况,针对每一个意外的异常情况分别处理
  • 思路2:接受无法预料到所有意外情况的现实,把兜底方案做好,保证即使出现极端情况,系统也不会崩溃

我们仔细分析思路1会发现这其实是一个悖论。意外情况就是意料之外的情况,无法预料的情况。如果被考虑到了,那么也就不能称之为意外情况了。

塔勒布在经典著作《反脆弱》一直想告诉我们:黑天鹅事件是无法预测的,极端意外情况是无法预测的,尾部风险虽然概率小但破坏力却极大。所以我们要保护好系统。

4.2 事前、事中、事后

如何思考保护系统这个问题?我们可以从三个维度思考:

  • 事前:监控异常,及时响应
  • 事中:快速止血,迅速恢复
  • 事后:数据恢复,定损复盘

4.3 事前监控

异常监控存在三个维度:

  • 系统异常:出现一次就需要感知
  • 业务监控:X分钟出现Y次需要感知
  • 数据监控:数据量不匹配,状态X时间内未流转

5 延伸阅读

反脆弱与技术系统高可用性

分布式事务理论与实例分析

相关推荐
追逐时光者1 小时前
免费、简单、直观的数据库设计工具和 SQL 生成器
后端·mysql
初晴~1 小时前
【Redis分布式锁】高并发场景下秒杀业务的实现思路(集群模式)
java·数据库·redis·分布式·后端·spring·
盖世英雄酱581361 小时前
InnoDB 的页分裂和页合并
数据库·后端
有一个好名字2 小时前
zookeeper分布式锁模拟12306买票
分布式·zookeeper·云原生
小_太_阳2 小时前
Scala_【2】变量和数据类型
开发语言·后端·scala·intellij-idea
直裾2 小时前
scala借阅图书保存记录(三)
开发语言·后端·scala
星就前端叭3 小时前
【开源】一款基于Vue3 + WebRTC + Node + SRS + FFmpeg搭建的直播间项目
前端·后端·开源·webrtc
9527华安3 小时前
FPGA多路MIPI转FPD-Link视频缩放拼接显示,基于IMX327+FPD953架构,提供2套工程源码和技术支持
fpga开发·架构·音视频
小林coding4 小时前
阿里云 Java 后端一面,什么难度?
java·后端·mysql·spring·阿里云