Hadoop MapReduce解析

Hadoop MapReduce是一个用于处理大量数据的编程模型和一个相应的实现框架。MapReduce作业通常分为两个阶段:Map阶段和Reduce阶段。

Map阶段

在Map阶段,你编写的Map函数会对输入数据进行处理。每个输入数据片段(例如一行文本)都会被Map函数处理,并产生中间键值对。

以单词计数为例,如果输入数据是一句话,如 "hello world hello",Map函数会产生以下中间键值对:

(hello, 1) (world, 1) (hello, 1) 

Reduce阶段

在Reduce阶段,所有Map阶段输出的中间键值对会被组合起来。具有相同键的值会一起处理。Reduce函数接收一个键和与该键相关的值的集合,然后合并这些值。

在单词计数的例子中,"hello" 这个键有两个值 "1",Reduce函数将它们加起来,得到最终结果:

(hello, 2) (world, 1) 

Hadoop MapReduce的工作流程

  1. 输入:输入数据被分割成固定大小的片段,每个片段由一个Map任务处理。
  2. Map任务:每个Map任务读取输入片段,并执行Map函数,输出中间键值对。
  3. Shuffle和Sort:系统会自动将所有Map任务的输出按键排序,并将相同键的值发送到同一个Reduce任务。
  4. Reduce任务:每个Reduce任务处理一组具有相同键的值,执行Reduce函数,并输出最终结果。
  5. 输出:Reduce任务的输出被写入到文件系统(通常是HDFS)。

示例代码

以下是一个简单的MapReduce程序示例,该程序计算文本文件中各个单词的出现频率。

java 复制代码
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

    // Map类
    public static class TokenizerMapper
       extends Mapper<Object, Text, Text, IntWritable>{

        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();

        public void map(Object key, Text value, Context context
                        ) throws IOException, InterruptedException {
            StringTokenizer itr = new StringTokenizer(value.toString());
            while (itr.hasMoreTokens()) {
                word.set(itr.nextToken());
                context.write(word, one);
            }
        }
    }

    // Reduce类
    public static class IntSumReducer
       extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();

        public void reduce(Text key, Iterable<IntWritable> values,
                           Context context
                           ) throws IOException, InterruptedException {
            int sum = 0;
            for (IntWritable val : values) {
                sum += val.get();
            }
            result.set(sum);
            context.write(key, result);
        }
    }

    // 主方法,配置MapReduce作业
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = Job.getInstance(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

让我们对上面给出的WordCount MapReduce示例代码进行更加深入的分析:

主要组件

  • TokenizerMapper: 这是自定义的Mapper类,它继承自Hadoop的Mapper类。它的作用是读取文本数据,分割成单词,并为每个单词输出一个键值对,键是单词本身,值是整数1。
  • IntSumReducer: 这是自定义的Reducer类,继承自Hadoop的Reducer类。它的作用是将Mapper输出的键值对中,相同键(单词)的值(出现次数)进行累加,得到每个单词的总出现次数。

Mapper内部逻辑
TokenizerMappermap方法接收输入数据,每次调用处理一行文本。map方法使用StringTokenizer将文本行分割成单词,并为每个单词输出一个(Text, IntWritable)键值对,其中Text是单词,IntWritable是数字1。

Reducer内部逻辑
IntSumReducerreduce方法接收所有具有相同键的值的集合(Iterable<IntWritable>),并对这些值进行累加,得到这个键(单词)的总出现次数。之后,它输出一个(Text, IntWritable)键值对,其中Text是单词,IntWritable是该单词的总出现次数。

Job配置
main方法中配置了MapReduce作业:

  • setJarByClass: 设置作业的JAR文件,这样Hadoop可以将其发送到集群中的节点上执行。
  • setMapperClass: 设置Map阶段使用的Mapper类。
  • setCombinerClass: 设置Combiner类,用于在Map阶段之后和Reduce阶段之前对输出进行局部合并。在这个例子中,它和Reducer类是相同的,因为单词计数的合并操作是可交换的和可结合的。
  • setReducerClass: 设置Reduce阶段使用的Reducer类。
  • setOutputKeyClass: 设置作业输出的键类型。
  • setOutputValueClass: 设置作业输出的值类型。
  • FileInputFormat.addInputPath: 设置输入数据的路径。
  • FileOutputFormat.setOutputPath: 设置输出数据的路径。
    在MapReduce中,Combiner的作用是对Map阶段的输出进行局部合并,以减少网络传输的数据量。Reducer的作用是对所有Map任务的输出进行全局合并,得到最终结果。
    WordCount的例子中,Combiner和Reducer可以是同一个类,因为它们执行的操作是相同的:简单的整数求和。这个操作是可结合的(combine-able)和可交换的(commutative),意味着无论操作的顺序如何,或者如何分组执行这些操作,最终结果都是一样的。

运行作业
job.waitForCompletion(true)方法会提交作业到Hadoop集群并等待其完成。它返回一个布尔值,表示作业是否成功完成。

输入和输出

  • 输入: MapReduce作业的输入通常是文本文件或其他文件格式,存储在HDFS上。在这个例子中,每一行文本都会被作为一个记录传递给一个TokenizerMapper实例。
  • 输出: 输出是处理过后的结果,通常也是存储在HDFS上的文本文件。在这个例子中,输出文件包含了单词和对应的出现次数。

注意事项

  • 数据类型: 在MapReduce中使用的键值对数据类型必须实现Writable接口,因此Hadoop提供了一些基本数据类型的Writable版本,例如IntWritable用于整数,Text用于字符串。
  • 性能优化: Combiner可以显著减少Map和Reduce之间数据传输量,因为它在Map端进行局部合并,减少了网络传输的数据。
  • 容错与可扩展性: MapReduce框架本身具有处理节点失败的能力。如果某个节点执行失败,作业会被重新调度到另一个节点上执行。

这个WordCount程序是学习MapReduce的一个经典入门示例,它展示了MapReduce编程模型的基本概念:分解任务、处理数据并在集群中并行执行。

要运行这个MapReduce作业,需要将代码打包成一个JAR文件,并将其提交到Hadoop集群上运行。命令行参数提供输入和输出路径。例如:

sh 复制代码
hadoop jar wordcount.jar WordCount /input/path /output/path

这个例子展示了MapReduce编程模型的基本概念,实际的MapReduce作业可能会更复杂,包括自定义数据类型、多个Map和Reduce阶段、数据排序和分区等。

相关推荐
Dipeak数巅科技1 小时前
数巅科技连续中标大模型项目 持续助力央国企数智化升级
大数据·人工智能·数据分析
Ray.19982 小时前
Flink 的核心特点和概念
大数据·数据仓库·数据分析·flink
lisacumt2 小时前
【kerberos】使用keytab文件,kerberos认证工具类 scala版本
hadoop·scala
极客先躯2 小时前
如何提升flink的处理速度?
大数据·flink·提高处理速度
BestandW1shEs2 小时前
快速入门Flink
java·大数据·flink
MasterNeverDown4 小时前
WPF 使用iconfont
hadoop·ui·wpf
速融云4 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
金融OG4 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
Linux运维老纪5 小时前
分布式存储的技术选型之HDFS、Ceph、MinIO对比
大数据·分布式·ceph·hdfs·云原生·云计算·运维开发
DavidSoCool5 小时前
es 3期 第25节-运用Rollup减少数据存储
大数据·elasticsearch·搜索引擎