KDTree索引(K近邻搜索,半径R内近邻搜索)——PCL

K近邻搜索(K Nearest Neighbors)

  • K近邻搜索是一种基于点数量的搜索方法,它会找到指定点附近最接近的K个邻居点。
  • K近邻搜索中的K值是一个参数,您需要指定要搜索的邻居数量。
  • 该方法适用于需要查找固定数量邻居点的情况,例如K最近邻分类器和最近邻插值等。
cpp 复制代码
	/// <summary>
	/// kdtree的k近邻索引
	/// </summary>
	/// <param name="cloud">需要所有的点云</param>
	/// <param name="searchPoint">需要索引的点</param>
	/// <param name="k">索引的个数</param>
	/// <returns>返回索引出点的编号数组</returns>
std::vector<int> PclTool::kdtreeKSearch(const pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const pcl::PointXYZ searchPoint, const unsigned int k)
{
    // 创建KdTreeFLANN对象,并把创建的点云设置为输入,searchPoint变量作为查询点
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; 
    // 设置搜索空间
    kdtree.setInputCloud(cloud);
    std::vector<int> pointIdxNKNSearch(k);          // 存储查询点近邻索引
    std::vector<float> pointNKNSquaredDistance(k);  // 存储近邻点对应距离平方

	  // 打印相关信息
    std::cout << "K nearest neighbor search at (" << searchPoint.x << " " << searchPoint.y << " " << searchPoint.z << ") with K=" << k << std::endl;

	if (kdtree.nearestKSearch(searchPoint, k, pointIdxNKNSearch, pointNKNSquaredDistance) > 0)  // 执行K近邻搜索
    {
        return pointIdxNKNSearch;
		 打印所有近邻坐标
		//for (size_t i = 0; i < pointIdxNKNSearch.size(); ++i)
		//{
		//	std::cout << "    " << cloud->points[pointIdxNKNSearch[i]].x << " " << cloud->points[pointIdxNKNSearch[i]].y << " " << cloud->points[pointIdxNKNSearch[i]].z << " (squared distance: " << pointNKNSquaredDistance[i] << ")" << std::endl;
		//}
    }
	else
	{
        return std::vector<int>();
	}
}

截取出兔子耳朵的部分

半径R内近邻搜索(Radius Neighbors):

  • 半径R内近邻搜索是一种基于距离阈值的搜索方法,它会找到距离指定点在半径R范围内的所有邻居点。
  • R是搜索半径,指定了要搜索的邻居点的最大距离。
  • 该方法适用于需要查找在一定距离范围内的邻居点的情况,例如密度估计和聚类等。
cpp 复制代码
    /// <summary>
    /// kdtree的半径近邻索引
    /// </summary>
    /// <param name="cloud">需要所有的点云</param>
    /// <param name="searchPoint">需要索引的点</param>
    /// <param name="radius">索引半径</param>
    /// <returns>返回索引出点的编号数组</returns>
    static std::vector<int> kdtreeRadiusSearch(const pcl::PointCloud<pcl::PointXYZ>::Ptr cloud, const pcl::PointXYZ searchPoint, const float radius)
    {
    // 创建KdTreeFLANN对象,并把创建的点云设置为输入,searchPoint变量作为查询点
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
    kdtree.setInputCloud(cloud);

    std::vector<int> pointIdxRadiusSearch;          // 存储近邻索引
    std::vector<float> pointRadiusSquaredDistance;  // 存储近邻对应距离的平方

    if (kdtree.radiusSearch(searchPoint, radius, pointIdxRadiusSearch, pointRadiusSquaredDistance) > 0)  // 执行半径R内近邻搜索方法
    {
        return pointIdxRadiusSearch;
    }
    else
    {
        return std::vector<int>();
    }
}

截取出兔子上半身

相关推荐
新手小白勇闯新世界2 天前
论文阅读(一种基于球面投影和特征提取的岩石点云快速配准算法)
论文阅读·点云·配准·icp·特征提取
Deepcong9 天前
3D点云与2D图像的相互转换:2D图像对应像素的坐标 转为3D空间的对应坐标
c++·目标跟踪·点云·2d转3d
PHP代码9 天前
entwine 和 conda环境下 使用和踩坑 详细步骤! 已解决
服务器·conda·点云
knighthood200120 天前
Ubuntu如何显示pcl版本
pcl
boss-dog1 个月前
订阅ROS2中相机的相关话题并保存RGB、深度和点云图
pcl·ros2
空名_Noname1 个月前
Open3D实现点云数据的序列化与网络传输
c++·点云·open3d
LiDAR点云4 个月前
任意空间平面点云旋转投影至水平面—罗德里格旋转公式
点云·点云水平投影·罗德里格旋转
黄晓魚4 个月前
MechMind结构光相机 采图SDK python调用
开发语言·图像处理·python·计算机视觉·pcl·点云处理
点云-激光雷达-Slam-三维牙齿4 个月前
单目测距 单目相机测距 图片像素坐标转实际坐标的一种转换方案
人工智能·python·算法·点云
stay hungry foolish4 个月前
PCL + Qt + Ribbon 风格(窗口自由组合) demo展示
c++·后端·spring cloud·ribbon·vtk·pcl