llamafactory:unified efficient fine-tuning of 100+ lanuage models

1.introduction

llamafactory由三个主要模块组成,Model Loader,Data Worker,Trainer。

2.Efficient fine-tuning techniques

2.1 Efficient Optimization

冻结微调:冻结大部分参数,同时只在一小部分解码器层中微调剩余参数,GaLore将梯度投影到低维空间,以内存高效的方法实现全参数学习;相反,Lora冻结所有的预训练权重,并在指定层中引入一对可训练的低秩矩阵,当与量化结合时,称之为QLora。

2.2 Efficient Computation

3.LLamafactory framework

3.1 ModelLoader

3.1.1 Initialization

使用transformers的AutoModel API加载模型并初始化参数,为了使框架兼容不同模型架构,建立了一个模型注册表,存储每层的类型,从而更方便的使用高效的微调技术,当word embedding的词汇大小超过tokenizer的容量时,会调整层的大小,并使用噪声均值初始化新参数,为了计算RoPE缩放的缩放因子,计算了输入序列长度的最大值与模型的上下文长度的比率。

3.1.2 Patches

为了启用flash-attention和s2-attention,使用monkey patch替换模型的前向计算。

3.1.3 Quantization

3.1.4 Adapter

PEFT

3.2 Data worker

构建了一个数据处理流程,包括数据加载,数据对齐,数据合并和预处理。将不同任务数据标准化为统一格式。

3.3 Trainer

Lora/GaLore,训练方法与Trainer独立,使用transformers进行pt和sft,trl进行rlhf和dpo,

3.4 Utilities

transformer和vllm进行输出,实现了openai风格的api。

4.Empirical study

4.1 Training efficiency

PubMed数据集,包括3600w数据,提取大约40w token来构建训练样本,

相关推荐
曦月逸霜3 分钟前
机器学习——个人笔记(持续更新中~)
人工智能·机器学习
新缸中之脑5 分钟前
30个最好的3D相关AI代理技能
人工智能·3d
Pyeako6 分钟前
opencv计算机视觉--LBPH&EigenFace&FisherFace人脸识别
人工智能·python·opencv·计算机视觉·lbph·eigenface·fisherface
工程师老罗8 分钟前
举例说明YOLOv1 输出坐标到原图像素的映射关系
人工智能·yolo·计算机视觉
猫头虎9 分钟前
手动部署开源OpenClaw汉化中文版过程中常见问题排查手册
人工智能·langchain·开源·github·aigc·agi·openclaw
多恩Stone11 分钟前
【3D AICG 系列-9】Trellis2 推理流程图超详细介绍
人工智能·python·算法·3d·aigc·流程图
整得咔咔响13 分钟前
贝尔曼最优公式(BOE)
人工智能·算法·机器学习
2501_9469614715 分钟前
极简大气创业融资 PPT 模板,适合路演、项目宣讲
人工智能·排序算法
得一录16 分钟前
AI 语音助手:如何用大模型优化智能语音交互?
人工智能
玄同76516 分钟前
Python 自动发送邮件实战:用 QQ/163 邮箱发送大模型生成的内容
开发语言·人工智能·python·深度学习·机器学习·邮件·邮箱