支持向量机——SVM

SVM 是一种机器学习算法,它的全称是支持向量机 (Support Vector Machine)。它主要用于解决二分类 问题,即给定一组数据,将它们分为两类。SVM 的基本思想是在特征空间中寻找一个最优的超平面 ,使得两类数据在该超平面两侧的间隔 最大,从而提高分类的准确性和泛化能力。SVM 还可以通过使用核函数来处理非线性可分的数据,将它们映射到更高维的空间中,再寻找最优的超平面进行分类。

SVM 的优点有:

  • 可以处理高维数据,不需要降维;
  • 可以处理线性可分和非线性可分的数据;
  • 可以避免过拟合,具有良好的泛化能力;
  • 只需要使用部分样本点(即支持向量)来确定分类边界,计算效率高。

SVM 的缺点有:

  • 对参数和核函数的选择敏感,需要调优;
  • 对噪声和异常值较敏感,可能影响最大间隔;
  • 不适合处理多分类问题,需要转化为多个二分类问题。

SVM 的应用领域有:

  • 文本分类和情感分析;
  • 图像识别和人脸检测;
  • 生物信息学和医学诊断;
  • 异常检测和入侵检测等。
相关推荐
Teacher.chenchong10 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
AndrewHZ12 分钟前
【图像处理基石】如何入门色彩评估?
图像处理·人工智能·深度学习·色彩科学·hvs·色彩评估·颜色工程
TomatoSCI12 分钟前
聚类的可视化选择:PCA / t-SNE丨TomatoSCI分析日记
人工智能·机器学习
大咖分享课14 分钟前
深度剖析:最新发布的ChatGPT Agent 技术架构与应用场景
人工智能·openai·智能助手·ai代理·chatgpt agent·自主任务执行
lucky_lyovo24 分钟前
卷积神经网络--网络性能提升
人工智能·神经网络·cnn
liliangcsdn28 分钟前
smolagents - 如何在mac用agents做简单算术题
人工智能·macos·prompt
nju_spy33 分钟前
周志华《机器学习导论》第8章 集成学习 Ensemble Learning
人工智能·随机森林·机器学习·集成学习·boosting·bagging·南京大学
星座5281 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
静心问道1 小时前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
说私域1 小时前
基于开源AI大模型、AI智能名片与S2B2C商城小程序源码的用户价值引导与核心用户沉淀策略研究
人工智能·开源