卷积学习笔记——一文直观形象弄懂

在神经网络的世界中,卷积操作犹如一个神秘的魔术师,它以一种精巧的方式提取出图像、声音等数据中的关键特征,为神经网络模型赋能。但究竟什么是卷积?我们一探究竟。

卷积(Convolution)本质上是一种数学运算操作,它可以用极简的数学形式漂亮地描述一个动态过程。我们可以用形象的比喻来理解卷积的概念:

把卷积比作一个火车驶入一条隧道,火车头部分进入隧道时,火车头与隧道入口的重叠区域就代表了这两个函数在该点的卷积值。

如果我们把火车头方向反过来(加上负号),并让火车动起来(加上时间t),那么火车头与隧道入口的重叠面积(两个函数相乘)就是著名的卷积公式了。

黄色重叠的面积即两者的乘积就是传说中的卷积

卷积操作在不同领域有着广泛的应用:

  • 通信领域:用于信号调制,实现信号的编码和解码。
  • 图像处理领域:用于图像锐化、边缘检测、图像拉伸等操作,提高图像质量。
  • 信号处理领域:用于对信号进行滤波,过滤掉噪声,提取出有价值的信息。

CNN卷积神经网络的应用

在卷积神经网络(CNN)中,卷积扮演着至关重要的角色。首先,我们可以将图像转换为像素矩阵的形式,每个像素点用RGB值进行编码。

CNN会使用卷积核(也叫过滤器kernel)在图像矩阵上滑动,进行卷积操作。

卷积核也叫过滤器,通过不同的卷积核能够提取出图像中不同的特征,例如边缘、纹理、曲线等。

通过多层卷积和pooling操作的组合,CNN可以逐步提取出图像的高级语义特征,最终实现对图像的精准分类和识别。

上图形象地展示了CNN中卷积层的工作原理。神秘的卷积操作就隐藏在这些看似简单的滑动和矩阵运算之中,但却是CNN取得巨大成功的核心基石。

因此,卷积不仅是一种数学美妙的运算,更是人工智能领域中一个行之有效的"法术",赋予了神经网络强大的特征提取能力。掌握了卷积这个"魔术",我们就能更深入地理解CNN的本质,并在此基础上创造出更多智能化的应用。

相关推荐
大写-凌祁2 小时前
零基础入门深度学习:从理论到实战,GitHub+开源资源全指南(2025最新版)
人工智能·深度学习·开源·github
wan5555cn3 小时前
多张图片生成视频模型技术深度解析
人工智能·笔记·深度学习·算法·音视频
Broken Arrows4 小时前
Linux学习——管理网络安全(二十一)
linux·学习·web安全
格林威4 小时前
机器视觉检测的光源基础知识及光源选型
人工智能·深度学习·数码相机·yolo·计算机视觉·视觉检测
今天也要学习吖4 小时前
谷歌nano banana官方Prompt模板发布,解锁六大图像生成风格
人工智能·学习·ai·prompt·nano banana·谷歌ai
雁于飞4 小时前
vscode中使用git、githup的基操
笔记·git·vscode·学习·elasticsearch·gitee·github
rannn_1115 小时前
【Javaweb学习|实训总结|Week1】html基础,CSS(选择器、常用样式、盒子模型、弹性盒布局、CSS定位、动画),js(基本类型、运算符典例)
css·笔记·学习·html
Ro Jace5 小时前
心灵笔记:第一性原理学习与实践
笔记
THMAIL5 小时前
量化股票从贫穷到财务自由之路 - 零基础搭建Python量化环境:Anaconda、Jupyter实战指南
linux·人工智能·python·深度学习·机器学习·金融