卷积学习笔记——一文直观形象弄懂

在神经网络的世界中,卷积操作犹如一个神秘的魔术师,它以一种精巧的方式提取出图像、声音等数据中的关键特征,为神经网络模型赋能。但究竟什么是卷积?我们一探究竟。

卷积(Convolution)本质上是一种数学运算操作,它可以用极简的数学形式漂亮地描述一个动态过程。我们可以用形象的比喻来理解卷积的概念:

把卷积比作一个火车驶入一条隧道,火车头部分进入隧道时,火车头与隧道入口的重叠区域就代表了这两个函数在该点的卷积值。

如果我们把火车头方向反过来(加上负号),并让火车动起来(加上时间t),那么火车头与隧道入口的重叠面积(两个函数相乘)就是著名的卷积公式了。

黄色重叠的面积即两者的乘积就是传说中的卷积

卷积操作在不同领域有着广泛的应用:

  • 通信领域:用于信号调制,实现信号的编码和解码。
  • 图像处理领域:用于图像锐化、边缘检测、图像拉伸等操作,提高图像质量。
  • 信号处理领域:用于对信号进行滤波,过滤掉噪声,提取出有价值的信息。

CNN卷积神经网络的应用

在卷积神经网络(CNN)中,卷积扮演着至关重要的角色。首先,我们可以将图像转换为像素矩阵的形式,每个像素点用RGB值进行编码。

CNN会使用卷积核(也叫过滤器kernel)在图像矩阵上滑动,进行卷积操作。

卷积核也叫过滤器,通过不同的卷积核能够提取出图像中不同的特征,例如边缘、纹理、曲线等。

通过多层卷积和pooling操作的组合,CNN可以逐步提取出图像的高级语义特征,最终实现对图像的精准分类和识别。

上图形象地展示了CNN中卷积层的工作原理。神秘的卷积操作就隐藏在这些看似简单的滑动和矩阵运算之中,但却是CNN取得巨大成功的核心基石。

因此,卷积不仅是一种数学美妙的运算,更是人工智能领域中一个行之有效的"法术",赋予了神经网络强大的特征提取能力。掌握了卷积这个"魔术",我们就能更深入地理解CNN的本质,并在此基础上创造出更多智能化的应用。

相关推荐
-To be number.wan3 小时前
Python数据分析:SciPy科学计算
python·学习·数据分析
楼田莉子5 小时前
C++项目:日志&&线程池
linux·c++·学习·visual studio code
weixin_421585015 小时前
表示学习发展历程
学习
EmbedLinX6 小时前
嵌入式Linux之U-Boot
linux·服务器·笔记·学习
听麟8 小时前
HarmonyOS 6.0+ 跨端会议助手APP开发实战:多设备接续与智能纪要全流程落地
分布式·深度学习·华为·区块链·wpf·harmonyos
2401_836235868 小时前
名片识别产品:技术要点与应用场景深度解析
人工智能·科技·深度学习·ocr
今儿敲了吗8 小时前
23| 画展
c++·笔记·学习·算法
龙山云仓9 小时前
No159:AI中国故事-对话娄敬——戍策长安与AI远见:草根智慧与国都定鼎
人工智能·深度学习·机器学习
我 see your eyes9 小时前
工作软件学习
学习
Coding茶水间10 小时前
基于深度学习的番茄叶子病虫害监测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·python·深度学习·yolo·目标检测