高创新 | Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测

高创新 | Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测

目录

    • [高创新 | Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测](#高创新 | Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测)

预测效果








基本介绍

1.Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测;

2.运行环境为Matlab2021b;

3.data为数据集,excel数据,输入多个特征,输出单个变量,多变量回归预测;

main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、MAE、MAPE多指标评价;

5.鱼鹰算法优化学习率,隐藏层节点,正则化系数;

6.注意力机制模块:

SEBlock(Squeeze-and-Excitation Block)是一种聚焦于通道维度而提出一种新的结构单元,为模型添加了通道注意力机制,该机制通过添加各个特征通道的重要程度的权重,针对不同的任务增强或者抑制对应的通道,以此来提取有用的特征。该模块的内部操作流程如图,总体分为三步:首先是Squeeze 压缩操作,对空间维度的特征进行压缩,保持特征通道数量不变。融合全局信息即全局池化,并将每个二维特征通道转换为实数。实数计算公式如公式所示。该实数由k个通道得到的特征之和除以空间维度的值而得,空间维数为H*W。其次是Excitation激励操作,它由两层全连接层和Sigmoid函数组成。如公式所示,s为激励操作的输出,σ为激活函数sigmoid,W2和W1分别是两个完全连接层的相应参数,δ是激活函数ReLU,对特征先降维再升维。最后是Reweight操作,对之前的输入特征进行逐通道加权,完成原始特征在各通道上的重新分配。

程序设计

  • 完整程序和数据获取方式私信回复:Matlab实现OOA-CNN-GRU-Attention鱼鹰算法优化卷积门控循环单元注意力机制多变量回归预测。
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%% 导入数据
res=xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
%%  划分训练集和测试集
M = size(P_train, 2);
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';
%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end
%%  优化算法参数设置
SearchAgents_no = 5;                   % 数量
Max_iteration =  10;                   % 最大迭代次数
dim = 3;                               % 优化参数个数
lb = [1e-3,50 1e-3];                   % 参数取值下界(学习率,隐藏层节点,正则化系数)
ub = [1e-2,60,1e-2];                   % 参数取值上界(学习率,隐藏层节点,正则化系数)

参考资料

1\]https://blog.csdn.net/kjm13182345320/article/details/124443069?spm=1001.2014.3001.5501 \[2\]https://blog.csdn.net/kjm13182345320/article/details/124443735?spm=1001.2014.3001.5501

相关推荐
机器学习之心9 天前
分类预测 | Matlab实现BO-LSTM-Attention多特征分类预测
matlab·分类·lstm·attention·bo-lstm
zbdx不知名菜鸡12 天前
self Attention为何除以根号dk?(全新角度)
transformer·attention·概率论
爱听歌的周童鞋17 天前
Flash Attention原理讲解
attention·self-attention·flash attention
AINLPer20 天前
Attention又升级!Moonshot | 提出MoE注意力架构:MoBA,提升LLM长文本推理效率
attention
xidianjiapei0011 个月前
5分钟速览深度学习经典论文 —— attention is all you need
人工智能·深度学习·transformer·attention·论文解读
爱听歌的周童鞋1 个月前
DeepSeek MLA(Multi-Head Latent Attention)算法浅析
attention·gqa·deepseek·mla
开出南方的花2 个月前
DeepSeek模型架构及优化内容
人工智能·pytorch·深度学习·机器学习·架构·nlp·attention
SpikeKing2 个月前
LeetCode - Google 大模型校招10题 第1天 Attention 汇总 (3题)
leetcode·llm·attention·multihead·groupquery·kvcache
机器学习之心3 个月前
WOA-CNN-GRU-Attention、CNN-GRU-Attention、WOA-CNN-GRU、CNN-GRU四模型对比多变量时序预测
attention·cnn-gru·woa-cnn-gru·四模型对比多变量时序预测
机器学习之心3 个月前
回归预测 | MATLAB实现CNN-BiLSTM-Attention多输入单输出回归预测
回归·多输入单输出回归预测·attention·cnn-bilstm