[C++][算法基础]边数限制最短路径(BellmanFord)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,

1≤m≤10000,

1≤x,y≤n,

任意边长的绝对值不超过 10000。

输入样例:
复制代码
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
复制代码
3

代码:

cpp 复制代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int M = 510,N = 10010;
int dist[M],standby[M];
int n,m,k,a,b,w;

struct Edge{
    int A;
    int B;
    int W;
}Edge[N];

int bellmanford_Sort(){
    dist[1] = 0;
    for(int i = 0;i < k;i++){
        memcpy(standby,dist,sizeof dist);
        for(int j = 0;j < m;j++){
            int A = Edge[j].A;
            int B = Edge[j].B;
            int W = Edge[j].W;
            dist[B] = min(standby[A] + W, dist[B]);
        }    
    }
    if(dist[n] > 0x3f3f3f3f >> 1){
        return -0x3f3f3f3f;
    }else{
        return dist[n];
    }
}

int main(){
    cin>>n>>m>>k;
    memset(dist,0x3f3f3f3f,sizeof dist);
    for(int i = 0;i < m;i++){
        cin>>a>>b>>w;
        Edge[i] = {a,b,w};
    }
    int now = bellmanford_Sort();
    if(now == -0x3f3f3f3f){
        cout<<"impossible";
    }else{
        cout<<dist[n];
    }
    return 0;
}
相关推荐
zylyehuo2 小时前
C++基础编程
c++
月盈缺3 小时前
学习嵌入式的第二十二天——数据结构——双向链表
数据结构·学习·链表
猿究院--王升3 小时前
jvm三色标记
java·jvm·算法
一车小面包3 小时前
逻辑回归 从0到1
算法·机器学习·逻辑回归
tt5555555555553 小时前
C/C++嵌入式笔试核心考点精解
c语言·开发语言·c++
lg_cool_3 小时前
Qt 中最经典、最常用的多线程通信场景
c++·qt6.3
科大饭桶4 小时前
C++入门自学Day14-- Stack和Queue的自实现(适配器)
c语言·开发语言·数据结构·c++·容器
tt5555555555554 小时前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
元亓亓亓5 小时前
LeetCode热题100--101. 对称二叉树--简单
算法·leetcode·职场和发展
躲在云朵里`5 小时前
深入理解数据结构:从数组、链表到B树家族
数据结构·b树