[C++][算法基础]边数限制最短路径(BellmanFord)

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数

请你求出从 1 号点到 n 号点的最多经过 k 条边的最短距离,如果无法从 1 号点走到 n 号点,输出 impossible

注意:图中可能 存在负权回路

输入格式

第一行包含三个整数 n,m,k。

接下来 m 行,每行包含三个整数 x,y,z,表示存在一条从点 x 到点 y 的有向边,边长为 z。

点的编号为 1∼n。

输出格式

输出一个整数,表示从 1 号点到 n 号点的最多经过 k 条边的最短距离。

如果不存在满足条件的路径,则输出 impossible

数据范围

1≤n,k≤500,

1≤m≤10000,

1≤x,y≤n,

任意边长的绝对值不超过 10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

代码:

cpp 复制代码
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;

const int M = 510,N = 10010;
int dist[M],standby[M];
int n,m,k,a,b,w;

struct Edge{
    int A;
    int B;
    int W;
}Edge[N];

int bellmanford_Sort(){
    dist[1] = 0;
    for(int i = 0;i < k;i++){
        memcpy(standby,dist,sizeof dist);
        for(int j = 0;j < m;j++){
            int A = Edge[j].A;
            int B = Edge[j].B;
            int W = Edge[j].W;
            dist[B] = min(standby[A] + W, dist[B]);
        }    
    }
    if(dist[n] > 0x3f3f3f3f >> 1){
        return -0x3f3f3f3f;
    }else{
        return dist[n];
    }
}

int main(){
    cin>>n>>m>>k;
    memset(dist,0x3f3f3f3f,sizeof dist);
    for(int i = 0;i < m;i++){
        cin>>a>>b>>w;
        Edge[i] = {a,b,w};
    }
    int now = bellmanford_Sort();
    if(now == -0x3f3f3f3f){
        cout<<"impossible";
    }else{
        cout<<dist[n];
    }
    return 0;
}
相关推荐
SylviaW0811 分钟前
python-leetcode 37.翻转二叉树
算法·leetcode·职场和发展
h^hh20 分钟前
洛谷 P3405 [USACO16DEC] Cities and States S(详解)c++
开发语言·数据结构·c++·算法·哈希算法
玦尘、20 分钟前
位运算实用技巧与LeetCode实战
算法·leetcode·位操作
重生之我要成为代码大佬27 分钟前
Python天梯赛10分题-念数字、求整数段和、比较大小、计算阶乘和
开发语言·数据结构·python·算法
Best_Me071 小时前
【CVPR2024-工业异常检测】PromptAD:与只有正常样本的少样本异常检测的学习提示
人工智能·学习·算法·计算机视觉
HBryce241 小时前
缓存-算法
算法·缓存
Dreams°1231 小时前
【透过 C++ 实现数据结构:链表、数组、树和图蕴含的逻辑深度解析】
开发语言·数据结构·c++·mysql
eso19831 小时前
Spark MLlib使用流程简介
python·算法·spark-ml·推荐算法
夏末秋也凉1 小时前
力扣-回溯-93 复原IP地址
算法·leetcode
Erik_LinX1 小时前
算法日记27:完全背包(DFS->记忆化搜索->倒叙DP->顺序DP->空间优化)
算法·深度优先