[阅读笔记2][FLAN]FINETUNED LANGUAGE MODELS ARE ZERO-SHOT LEARNERS

接下来这篇是谷歌的FLAN,提出了指令微调这一新范式,在2022年发表。

这篇论文指出GPT3的zero-shot性能相比few-shot性能差太多了。他们发现如果对预训练模型进行指令微调能使zero-shot性能显著提升,下面右图显示指令微调后zero-shot比GPT3 few-shot性能都要强。

左图解释了指令微调,就是把输入转化为指令的格式,然后再去不相关的任务上做微调,最后却能提升没见过任务的性能。

指令微调是将前两种范式进行了结合,提升了语言模型在推理时的交互响应。

第一种范式就是预训练微调范式,针对特定任务需要特定数据集来微调。

第二种范式是gpt3提出的prompting范式,把任务相关的示例输入给模型,利用模型上下文学习能力来得到想要的输出。

第三种就是本文提出的指令微调范式,可以显著提升模型的zero-shot能力。

微调一共使用了62个文本数据集,每个数据集又属于不同任务,按照任务分类可以分为12类。为了测试模型的zero-shot能力,他这里定义了一下没见过的任务,他认为只有任务类中所有数据集都没见过,那这个任务才算是没见过的任务。以自然语言推理任务为例,使用剩余11个任务类中数据集进行微调,然后自然语言推理任务中的数据集作为测试集进行测试。

对于每一个数据集,作者又定义了10个不同的输入模板,这是为了防止模型对某一特定输入过拟合。但后续实验证明效果不明显。

模型使用的是LaMDA的预训练版本,然后对其进行指令微调。下图是FLAN的zero-shot性能,虽然模型不如GPT3大,但是性能却比GPT3要好。

作者做了三个消融实验,第一个是考虑参与微调的任务类数量,如图中所示,随着微调的其他任务增多,模型平均性能持续上升。第二个消融是考虑模型大小,对于大模型指令微调才有性能提升的作用,对于小模型反而性能变差了,对于这点可能的解释是对小模型微调会挤占参数空间,造成预训练的通用知识遗忘。

最后一个消融是考虑指令格式的作用,因为性能提升也可能单纯因为进行了微调,扩大了参与训练的语料。以翻译任务为例,作者将模型输入分为了三种格式,第一种就是简单输入待翻译句子,第二种先输入任务名再输入数据集名最后是句子,第三种就是指令格式。可以看到还是使用指令格式的输入性能最好,也就是说模型提升纯粹是因为指令这种格式。

相关推荐
代码游侠9 小时前
ARM开发——阶段问题综述(二)
运维·arm开发·笔记·单片机·嵌入式硬件·学习
Elastic 中国社区官方博客10 小时前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
张祥64228890410 小时前
误差理论与测量平差基础笔记十
笔记·算法·机器学习
2501_9333295510 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI10 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅11 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛11 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID11 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首202012 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能