(金融会计领域)普通最小二乘法回归得到的β值构建KV指数

KV指数

参考 Kim 和 Vemrecchia(2001)的方法,采用 KV 指数来衡量中潜股份的信息披露质量。该方法通过股票收益率对交易量的回归系数来衡量信息披露质量,其原理在于,上市公司的信息披露质量越低,股票收益率对交易量的依赖程度越高,回归系数越大,即 KV 指数是信息披露质量的反向指标。

KV指数的优点在于它反映的是市场信息,也就是投资者对于上市公司信息不对称程度的客观评价,该评价同时包括了强制性和自愿性披露的信息。同时,本文借鉴瞿光宇等(2014)的做法,采用如下改进模型计算KV指数(KV):

其中,P是第t日的收盘价,是第t日的交易股数,是年平均日交易量,是由最小二乘法的回归得到的,即KV指数越大,KV越大,表明股票交易量的多少与股票收益率的高低关系密切,这表明投资者从企业获取的直接信息较少,因此更依赖于股票交易量,从中可以看出企业的信息披露质量越差,也就是说,KV指数与公司信息披露质量成负相关,也即Quality越大时,表面信息披露质量越低。

一、数据准备 data.xlsx

二、代码实现

python 复制代码
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

# 读取Excel文件
df = pd.read_excel('data.xlsx')

# 将'Trading_date'列转换为日期格式,并提取年份
df['Trading_date'] = pd.to_datetime(df['Trading_date'])
df['Year'] = df['Trading_date'].dt.year

# 计算收盘价变化的百分比,及其对数值
df['Pct_Change'] = df['Closing_price'].pct_change()
df['Log_Return'] = np.log(df['Pct_Change'].abs() + 1)

# 按年份分组
grouped = df.groupby('Year')

# 用于存储每年KV值结果的字典
kv_values_per_year = {}

for year, group in grouped:
    # 计算年度平均日交易量
    Vol0 = group['Transaction_quantity'].mean()

    # 计算交易量与年度平均日交易量的差异
    group['Volume_Diff'] = group['Transaction_quantity'] / Vol0 - 1 

    # 用statsmodels进行OLS回归
    # 这里我们移除第一行,因为其变化率是NaN
    X = sm.add_constant(group['Volume_Diff'][1:]) # 加入截距项 使用sm.add_constant添加常数列
    Y = group['Log_Return'][1:]

    model = sm.OLS(Y, X, missing='drop')  # 对于缺失值,我们选择删除
    results = model.fit()

    # 提取回归系数β
    beta = results.params['Volume_Diff']

    alpha = results.params['const']
    mu_i = results.resid
    # print(f"alpha: {alpha}, beta: {beta}, mu_i: {mu_i}")

    # 计算KV指数
    KV = beta * 10

    # 将结果保存到字典中
    kv_values_per_year[year] = KV

# 打印每年的KV值
for year, kv_value in kv_values_per_year.items():
    print(f"{year}年的KV值为: {kv_value}")

# 创建一个新的图表
plt.figure()

# 绘制KV值随年份变化的折线图
years = list(kv_values_per_year.keys())
kv_values = list(kv_values_per_year.values())
plt.plot(years, kv_values, marker='o')

# 在每个点旁边显示其y轴数值,且只显示小数点后两位
for i, txt in enumerate(kv_values):
    plt.annotate("{:.2f}".format(txt), (years[i], kv_values[i]),
                  textcoords="offset points", xytext=(0,10), ha='center')
    
# 设置图表标题和坐标轴标签
plt.title('KV Value Changes Over Years')
plt.xlabel('Year')
plt.ylabel('KV Value')

# 保存图表为png图像文件
plt.savefig('kv_values.png')
相关推荐
币之互联万物3 小时前
科技赋能金融 共建数字化跨境投资新生态
人工智能·科技·金融
科技圈快讯3 小时前
金融智能体:破解小微企业融资“时间差”的关键密码
人工智能·金融
Ynchen. ~3 小时前
[工程实战] 攻克“数据孤岛”:基于隐语纵向联邦学习的金融风控建模全解析
算法·金融·逻辑回归·隐语
weixin_457760001 天前
EIOU (Efficient IoU): 高效边界框回归损失的解析
人工智能·数据挖掘·回归
Web3VentureView1 天前
特朗普回归到全球金融震荡:链上制度正成为新的稳压器
大数据·金融·web3·去中心化·区块链
EasyDSS1 天前
视频直播点播平台EasyDSS如何重塑金融数字化培训新模式?
金融·音视频
Metathe2 天前
科技金融的未来 “王者”—— 电子金融
科技·金融·经济学·电子金融
智元视界2 天前
智慧金融智能风控:AI算法如何服务小微企业
人工智能·金融·架构·云计算·数字化转型·产业升级
smile_Iris2 天前
Day 27 pipeline 管道
机器学习·回归