偏微分方程算法之混合边界差分

目录

一、研究对象

二、差分格式

[2.1 向前欧拉格式](#2.1 向前欧拉格式)

[1. 中心差商](#1. 中心差商)

[1.1.1 理论推导](#1.1.1 理论推导)

[1.1.2 算例实现](#1.1.2 算例实现)

[2. x=0处向前差商,x=1处向后差商](#2. x=0处向前差商,x=1处向后差商)

[1.2.1 理论推导](#1.2.1 理论推导)

[1.2.2 算例实现](#1.2.2 算例实现)

[2.2 Crank-Nicolson格式](#2.2 Crank-Nicolson格式)

[2.2.1 理论推导](#2.2.1 理论推导)

[2.2.2 算例实现](#2.2.2 算例实现)


一、研究对象

这里我们以混合边界(导数边界)条件下的抛物型方程初边值问题:

其中,且当同时为0时公式(1)中的边界条件是诺依曼条件。

二、差分格式

这里我们用向前欧拉法显格式和Crank-Nicolson格式进行差分格式建立。

2.1 向前欧拉格式

1. 中心差商

1.1.1 理论推导

网格剖分参照偏微分方程算法之向前欧拉法(Forward Euler)-CSDN博客。在节点处得到节点离散方程:

利用一阶向前差商代替微商,可得:

边界条件采用中心差商

其中中x变量都已经越界,属于虚拟数值,将在下文单独处理。将上面各式带入公式(2)中,将数值解代替精确解并忽略高阶项,可得到离散差分格式:

公式(3)中第1式可以写成:

其中。为处理越界问题,设公式(4)对i=0和i=1都成立,即:

将上式与公式(3)中的第3式以及联立,可得:

联合公式(5)、(6)可得:

1.1.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                u[0][k+1]=(1.0-2*r-2*r*lambda*h)*u[0][k]+2*r*u[1][k]-2*r*h*alpha(t[k])+tau*f(x[0], t[k]);
                for(i=1;i<m;i++)
                        u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                u[m][k+1]=2*r*u[m-1][k]+(1.0-2*r-2*r*mu*h)*u[m][k]+2*r*h*beta(t[k])+tau*f(x[m],t[k]);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9500    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.9275    0.9875    1.0000    1.0000    1.0000    1.0000
0.0075  0.9111    0.9756    0.9969    1.0000    1.0000    1.0000
0.0100  0.8978    0.9648    0.9923    0.9992    1.0000    1.0000
0.0125  0.8864    0.9549    0.9872    0.9977    0.9998    1.0000
0.0150  0.8764    0.9459    0.9818    0.9956    0.9993    0.9999
0.0175  0.8673    0.9375    0.9762    0.9931    0.9985    0.9996
0.0200  0.8590    0.9296    0.9708    0.9902    0.9974    0.9991

......

0.1000  0.7175    0.7829    0.8345    0.8718    0.8942    0.9017
0.2500  0.5541    0.6048    0.6452    0.6745    0.6923    0.6983
0.5000  0.3612    0.3942    0.4205    0.4396    0.4512    0.4551
1.0000  0.1534    0.1674    0.1786    0.1867    0.1917    0.1933

2. x=0处向前差商,x=1处向后差商

1.2.1 理论推导

利用一阶向前差商代替微商,可得:

边界条件处理如下:

将上式带入公式(2),将数值解代替精确解并忽略高阶项,可得离散格式:

整理可得:

1.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                 for(i=1;i<m;i++)
                     u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                 u[0][k+1]=(u[1][k+1]-h*alpha(t[k]))/(1.0+lambda*h);
                 u[m][k+1]=(u[m-1][k+1]+h*beta(t[k]))/(1.0+mu*h);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9091    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.8884    0.9773    1.0000    1.0000    1.0000    1.0000
0.0075  0.8734    0.9607    0.9943    1.0000    1.0000    1.0000
0.0100  0.8612    0.9473    0.9873    0.9986    1.0000    1.0000
0.0125  0.8507    0.9358    0.9801    0.9961    0.9996    1.0000
0.0150  0.8415    0.9256    0.9730    0.9930    0.9989    0.9998
0.0175  0.8331    0.9164    0.9662    0.9895    0.9976    0.9993
0.0200  0.8255    0.9080    0.9596    0.9857    0.9960    0.9985

......

0.1000  0.6901    0.7591    0.8140    0.8537    0.8778    0.8859
0.2500  0.5230    0.5753    0.6170    0.6474    0.6658    0.6720
0.5000  0.3298    0.3627    0.3890    0.4082    0.4198    0.4237
1.0000  0.1311    0.1442    0.1547    0.1623    0.1669    0.1685

2.2 Crank-Nicolson格式

边界条件采用中心差商。

2.2.1 理论推导

在虚拟节点处得离散方程:

利用差商代替微商:

其中同样越界,将上式代入公式(8),用数值解代替精确解并忽略高阶项,可得离散格式:

公式(9)中第1式可写为

为处理越界问题,设公式(10)对i=0和i=m都成立,即:

将上式与公式(9)中的第3式以及联立,可得:

联合上面两式与公式(10)可得:

上式可写出矩阵形式:

上式可用追赶法求解。

2.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a, lambda,mu,r;
        double *x, *t, *a1, *b, *c, *d, *ans, **u, tkmid;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);
        double * chase_algorithm(double *a, double *b, double *c, double *d, int n);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i] = i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k] = k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        a1=(double *)malloc(sizeof(double)*(m+1));
        b=(double *)malloc(sizeof(double)*(m+1));
        c=(double *)malloc(sizeof(double)*(m+1));
        d=(double *)malloc(sizeof(double)*(m+1));
        ans=(double *)malloc(sizeof(double)*(m+1));

        for(k=0;k<n;k++)
        {
                tkmid=(t[k]+t[k+1])/2.0;
                for(i=1;i<m;i++)
                {
                         d[i]=r*u[i-1][k]/2.0+(1.0-r)*u[i][k]+r*u[i+1][k]/2.0+tau*f(x[i],tkmid);
                         a1[i]=-r/2.0;
                         b[i]=1.0+r;
                         c[i]=a1[i];
                }
                b[0]=1.0+r+r*lambda*h;
                b[m]=1.0+r+r*mu*h;
                c[0]=-r;
                a1[m]=-r;

                d[0]=(1.0-r-r*lambda*h)*u[0][k]+r*u[1][k]-r*h*alpha(t[k])-r*h*alpha(t[k+1])+tau*f(x[0],tkmid);
                d[m]=r*u[m-1][k]+(1.0-r-r*mu*h)*u[m][k]+r*h*beta(t[k])+r*h*beta(t[k+1])+tau*f(x[m],tkmid);
                ans=chase_algorithm(a1,b,c,d,m+1);
                for(i=0;i<=m;i++)
                         u[i][k+1]=ans[i];
        }

        free(a1);free(b);free(c);free(d);

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");
        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k]);
                printf("\n");
        }
        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");
        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1;k<=4;k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}
double * chase_algorithm(double *a, double *b, double *c, double *d, int n)
{
        int i;
        double * ans, *g, *w, p;

        ans=(double *)malloc(sizeof(double)*n);
        g=(double *)malloc(sizeof(double)*n);
        w=(double *)malloc(sizeof(double)*n);
        g[0]=d[0]/b[0];
        w[0]=c[0]/b[0];

        for(i=1;i<n;i++)
        {
                p=b[i]-a[i]*w[i-1];
                g[i]=(d[i]-a[i]*g[i-1])/p;
                w[i]=c[i]/p;
        }
        ans[n-1]=g[n-1];
        i=n-2;
        do
        {
                ans[i]=g[i]-w[i]*ans[i+1];
                i=i-1;
        }while(i>=0);

        free(g);free(w);

        return ans;
}

结果如下:

cpp 复制代码
r=0.2500
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9600    0.9960    0.9996    1.0000    1.0000    1.0000
0.0050  0.9347    0.9868    0.9980    0.9997    1.0000    1.0000
0.0075  0.9164    0.9765    0.9950    0.9991    0.9999    1.0000
0.0100  0.9021    0.9663    0.9910    0.9980    0.9996    0.9999
0.0125  0.8900    0.9567    0.9864    0.9964    0.9992    0.9997
0.0150  0.8795    0.9478    0.9813    0.9944    0.9985    0.9993
0.0175  0.8701    0.9394    0.9762    0.9920    0.9975    0.9988
0.0200  0.8616    0.9315    0.9709    0.9893    0.9963    0.9981

......

0.1000  0.7180    0.7834    0.8350    0.8720    0.8943    0.9017
0.2500  0.5547    0.6054    0.6458    0.6751    0.6929    0.6989
0.5000  0.3618    0.3949    0.4213    0.4404    0.4520    0.4559
1.0000  0.1540    0.1681    0.1793    0.1874    0.1924    0.1940
相关推荐
前端 贾公子2 分钟前
《Vuejs设计与实现》第 5 章(非原始值响应式方案)下 Set 和 Map 的响应式代理
数据结构·算法
WWZZ20251 小时前
ORB_SLAM2原理及代码解析:SetPose() 函数
人工智能·opencv·算法·计算机视觉·机器人·自动驾驶
小马学嵌入式~2 小时前
堆排序原理与实现详解
开发语言·数据结构·学习·算法
青岛少儿编程-王老师2 小时前
CCF编程能力等级认证GESP—C++6级—20250927
java·c++·算法
一人の梅雨2 小时前
1688 拍立淘接口深度开发:从图像识别到供应链匹配的技术实现
人工智能·算法·计算机视觉
Miraitowa_cheems3 小时前
LeetCode算法日记 - Day 64: 岛屿的最大面积、被围绕的区域
java·算法·leetcode·决策树·职场和发展·深度优先·推荐算法
Christo33 小时前
关于K-means和FCM的凸性问题讨论
人工智能·算法·机器学习·数据挖掘·kmeans
_不会dp不改名_4 小时前
leetcode_1382 将二叉搜索树变平衡树
算法·leetcode·职场和发展
greentea_20134 小时前
Codeforces Round 173 B. Digits(2043)
c++·算法
m0_743106465 小时前
LOBE-GS:分块&致密化效率提升
人工智能·算法·计算机视觉·3d·几何学