偏微分方程算法之混合边界差分

目录

一、研究对象

二、差分格式

[2.1 向前欧拉格式](#2.1 向前欧拉格式)

[1. 中心差商](#1. 中心差商)

[1.1.1 理论推导](#1.1.1 理论推导)

[1.1.2 算例实现](#1.1.2 算例实现)

[2. x=0处向前差商,x=1处向后差商](#2. x=0处向前差商,x=1处向后差商)

[1.2.1 理论推导](#1.2.1 理论推导)

[1.2.2 算例实现](#1.2.2 算例实现)

[2.2 Crank-Nicolson格式](#2.2 Crank-Nicolson格式)

[2.2.1 理论推导](#2.2.1 理论推导)

[2.2.2 算例实现](#2.2.2 算例实现)


一、研究对象

这里我们以混合边界(导数边界)条件下的抛物型方程初边值问题:

其中,且当同时为0时公式(1)中的边界条件是诺依曼条件。

二、差分格式

这里我们用向前欧拉法显格式和Crank-Nicolson格式进行差分格式建立。

2.1 向前欧拉格式

1. 中心差商

1.1.1 理论推导

网格剖分参照偏微分方程算法之向前欧拉法(Forward Euler)-CSDN博客。在节点处得到节点离散方程:

利用一阶向前差商代替微商,可得:

边界条件采用中心差商

其中中x变量都已经越界,属于虚拟数值,将在下文单独处理。将上面各式带入公式(2)中,将数值解代替精确解并忽略高阶项,可得到离散差分格式:

公式(3)中第1式可以写成:

其中。为处理越界问题,设公式(4)对i=0和i=1都成立,即:

将上式与公式(3)中的第3式以及联立,可得:

联合公式(5)、(6)可得:

1.1.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                u[0][k+1]=(1.0-2*r-2*r*lambda*h)*u[0][k]+2*r*u[1][k]-2*r*h*alpha(t[k])+tau*f(x[0], t[k]);
                for(i=1;i<m;i++)
                        u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                u[m][k+1]=2*r*u[m-1][k]+(1.0-2*r-2*r*mu*h)*u[m][k]+2*r*h*beta(t[k])+tau*f(x[m],t[k]);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9500    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.9275    0.9875    1.0000    1.0000    1.0000    1.0000
0.0075  0.9111    0.9756    0.9969    1.0000    1.0000    1.0000
0.0100  0.8978    0.9648    0.9923    0.9992    1.0000    1.0000
0.0125  0.8864    0.9549    0.9872    0.9977    0.9998    1.0000
0.0150  0.8764    0.9459    0.9818    0.9956    0.9993    0.9999
0.0175  0.8673    0.9375    0.9762    0.9931    0.9985    0.9996
0.0200  0.8590    0.9296    0.9708    0.9902    0.9974    0.9991

......

0.1000  0.7175    0.7829    0.8345    0.8718    0.8942    0.9017
0.2500  0.5541    0.6048    0.6452    0.6745    0.6923    0.6983
0.5000  0.3612    0.3942    0.4205    0.4396    0.4512    0.4551
1.0000  0.1534    0.1674    0.1786    0.1867    0.1917    0.1933

2. x=0处向前差商,x=1处向后差商

1.2.1 理论推导

利用一阶向前差商代替微商,可得:

边界条件处理如下:

将上式带入公式(2),将数值解代替精确解并忽略高阶项,可得离散格式:

整理可得:

1.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                 for(i=1;i<m;i++)
                     u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                 u[0][k+1]=(u[1][k+1]-h*alpha(t[k]))/(1.0+lambda*h);
                 u[m][k+1]=(u[m-1][k+1]+h*beta(t[k]))/(1.0+mu*h);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9091    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.8884    0.9773    1.0000    1.0000    1.0000    1.0000
0.0075  0.8734    0.9607    0.9943    1.0000    1.0000    1.0000
0.0100  0.8612    0.9473    0.9873    0.9986    1.0000    1.0000
0.0125  0.8507    0.9358    0.9801    0.9961    0.9996    1.0000
0.0150  0.8415    0.9256    0.9730    0.9930    0.9989    0.9998
0.0175  0.8331    0.9164    0.9662    0.9895    0.9976    0.9993
0.0200  0.8255    0.9080    0.9596    0.9857    0.9960    0.9985

......

0.1000  0.6901    0.7591    0.8140    0.8537    0.8778    0.8859
0.2500  0.5230    0.5753    0.6170    0.6474    0.6658    0.6720
0.5000  0.3298    0.3627    0.3890    0.4082    0.4198    0.4237
1.0000  0.1311    0.1442    0.1547    0.1623    0.1669    0.1685

2.2 Crank-Nicolson格式

边界条件采用中心差商。

2.2.1 理论推导

在虚拟节点处得离散方程:

利用差商代替微商:

其中同样越界,将上式代入公式(8),用数值解代替精确解并忽略高阶项,可得离散格式:

公式(9)中第1式可写为

为处理越界问题,设公式(10)对i=0和i=m都成立,即:

将上式与公式(9)中的第3式以及联立,可得:

联合上面两式与公式(10)可得:

上式可写出矩阵形式:

上式可用追赶法求解。

2.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a, lambda,mu,r;
        double *x, *t, *a1, *b, *c, *d, *ans, **u, tkmid;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);
        double * chase_algorithm(double *a, double *b, double *c, double *d, int n);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i] = i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k] = k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        a1=(double *)malloc(sizeof(double)*(m+1));
        b=(double *)malloc(sizeof(double)*(m+1));
        c=(double *)malloc(sizeof(double)*(m+1));
        d=(double *)malloc(sizeof(double)*(m+1));
        ans=(double *)malloc(sizeof(double)*(m+1));

        for(k=0;k<n;k++)
        {
                tkmid=(t[k]+t[k+1])/2.0;
                for(i=1;i<m;i++)
                {
                         d[i]=r*u[i-1][k]/2.0+(1.0-r)*u[i][k]+r*u[i+1][k]/2.0+tau*f(x[i],tkmid);
                         a1[i]=-r/2.0;
                         b[i]=1.0+r;
                         c[i]=a1[i];
                }
                b[0]=1.0+r+r*lambda*h;
                b[m]=1.0+r+r*mu*h;
                c[0]=-r;
                a1[m]=-r;

                d[0]=(1.0-r-r*lambda*h)*u[0][k]+r*u[1][k]-r*h*alpha(t[k])-r*h*alpha(t[k+1])+tau*f(x[0],tkmid);
                d[m]=r*u[m-1][k]+(1.0-r-r*mu*h)*u[m][k]+r*h*beta(t[k])+r*h*beta(t[k+1])+tau*f(x[m],tkmid);
                ans=chase_algorithm(a1,b,c,d,m+1);
                for(i=0;i<=m;i++)
                         u[i][k+1]=ans[i];
        }

        free(a1);free(b);free(c);free(d);

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");
        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k]);
                printf("\n");
        }
        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");
        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1;k<=4;k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}
double * chase_algorithm(double *a, double *b, double *c, double *d, int n)
{
        int i;
        double * ans, *g, *w, p;

        ans=(double *)malloc(sizeof(double)*n);
        g=(double *)malloc(sizeof(double)*n);
        w=(double *)malloc(sizeof(double)*n);
        g[0]=d[0]/b[0];
        w[0]=c[0]/b[0];

        for(i=1;i<n;i++)
        {
                p=b[i]-a[i]*w[i-1];
                g[i]=(d[i]-a[i]*g[i-1])/p;
                w[i]=c[i]/p;
        }
        ans[n-1]=g[n-1];
        i=n-2;
        do
        {
                ans[i]=g[i]-w[i]*ans[i+1];
                i=i-1;
        }while(i>=0);

        free(g);free(w);

        return ans;
}

结果如下:

cpp 复制代码
r=0.2500
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9600    0.9960    0.9996    1.0000    1.0000    1.0000
0.0050  0.9347    0.9868    0.9980    0.9997    1.0000    1.0000
0.0075  0.9164    0.9765    0.9950    0.9991    0.9999    1.0000
0.0100  0.9021    0.9663    0.9910    0.9980    0.9996    0.9999
0.0125  0.8900    0.9567    0.9864    0.9964    0.9992    0.9997
0.0150  0.8795    0.9478    0.9813    0.9944    0.9985    0.9993
0.0175  0.8701    0.9394    0.9762    0.9920    0.9975    0.9988
0.0200  0.8616    0.9315    0.9709    0.9893    0.9963    0.9981

......

0.1000  0.7180    0.7834    0.8350    0.8720    0.8943    0.9017
0.2500  0.5547    0.6054    0.6458    0.6751    0.6929    0.6989
0.5000  0.3618    0.3949    0.4213    0.4404    0.4520    0.4559
1.0000  0.1540    0.1681    0.1793    0.1874    0.1924    0.1940
相关推荐
tt5555555555554 分钟前
字符串与算法题详解:最长回文子串、IP 地址转换、字符串排序、蛇形矩阵与字符串加密
c++·算法·矩阵
元亓亓亓39 分钟前
LeetCode热题100--101. 对称二叉树--简单
算法·leetcode·职场和发展
不会学习?1 小时前
算法03 归并分治
算法
NuyoahC2 小时前
笔试——Day43
c++·算法·笔试
2301_821919922 小时前
决策树8.19
算法·决策树·机器学习
秋难降2 小时前
别再用暴力排序了!大小顶堆让「取极值」效率飙升至 O (log n)
python·算法·排序算法
学行库小秘3 小时前
基于门控循环单元的数据回归预测 GRU
人工智能·深度学习·神经网络·算法·回归·gru
_meow_3 小时前
数学建模 15 逻辑回归与随机森林
算法·数学建模·逻辑回归
二向箔reverse4 小时前
机器学习算法核心总结
人工智能·算法·机器学习
猿究院--冯磊5 小时前
JVM垃圾收集器
java·jvm·算法