偏微分方程算法之混合边界差分

目录

一、研究对象

二、差分格式

[2.1 向前欧拉格式](#2.1 向前欧拉格式)

[1. 中心差商](#1. 中心差商)

[1.1.1 理论推导](#1.1.1 理论推导)

[1.1.2 算例实现](#1.1.2 算例实现)

[2. x=0处向前差商,x=1处向后差商](#2. x=0处向前差商,x=1处向后差商)

[1.2.1 理论推导](#1.2.1 理论推导)

[1.2.2 算例实现](#1.2.2 算例实现)

[2.2 Crank-Nicolson格式](#2.2 Crank-Nicolson格式)

[2.2.1 理论推导](#2.2.1 理论推导)

[2.2.2 算例实现](#2.2.2 算例实现)


一、研究对象

这里我们以混合边界(导数边界)条件下的抛物型方程初边值问题:

其中,且当同时为0时公式(1)中的边界条件是诺依曼条件。

二、差分格式

这里我们用向前欧拉法显格式和Crank-Nicolson格式进行差分格式建立。

2.1 向前欧拉格式

1. 中心差商

1.1.1 理论推导

网格剖分参照偏微分方程算法之向前欧拉法(Forward Euler)-CSDN博客。在节点处得到节点离散方程:

利用一阶向前差商代替微商,可得:

边界条件采用中心差商

其中中x变量都已经越界,属于虚拟数值,将在下文单独处理。将上面各式带入公式(2)中,将数值解代替精确解并忽略高阶项,可得到离散差分格式:

公式(3)中第1式可以写成:

其中。为处理越界问题,设公式(4)对i=0和i=1都成立,即:

将上式与公式(3)中的第3式以及联立,可得:

联合公式(5)、(6)可得:

1.1.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                u[0][k+1]=(1.0-2*r-2*r*lambda*h)*u[0][k]+2*r*u[1][k]-2*r*h*alpha(t[k])+tau*f(x[0], t[k]);
                for(i=1;i<m;i++)
                        u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                u[m][k+1]=2*r*u[m-1][k]+(1.0-2*r-2*r*mu*h)*u[m][k]+2*r*h*beta(t[k])+tau*f(x[m],t[k]);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9500    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.9275    0.9875    1.0000    1.0000    1.0000    1.0000
0.0075  0.9111    0.9756    0.9969    1.0000    1.0000    1.0000
0.0100  0.8978    0.9648    0.9923    0.9992    1.0000    1.0000
0.0125  0.8864    0.9549    0.9872    0.9977    0.9998    1.0000
0.0150  0.8764    0.9459    0.9818    0.9956    0.9993    0.9999
0.0175  0.8673    0.9375    0.9762    0.9931    0.9985    0.9996
0.0200  0.8590    0.9296    0.9708    0.9902    0.9974    0.9991

......

0.1000  0.7175    0.7829    0.8345    0.8718    0.8942    0.9017
0.2500  0.5541    0.6048    0.6452    0.6745    0.6923    0.6983
0.5000  0.3612    0.3942    0.4205    0.4396    0.4512    0.4551
1.0000  0.1534    0.1674    0.1786    0.1867    0.1917    0.1933

2. x=0处向前差商,x=1处向后差商

1.2.1 理论推导

利用一阶向前差商代替微商,可得:

边界条件处理如下:

将上式带入公式(2),将数值解代替精确解并忽略高阶项,可得离散格式:

整理可得:

1.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a,lambda,mu,r;
        double *x, *t,**u;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f.\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i]=i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k]=k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        for(k=0;k<n;k++)
        {
                 for(i=1;i<m;i++)
                     u[i][k+1]=r*u[i-1][k]+(1-2*r)*u[i][k]+r*u[i+1][k]+tau*f(x[i],t[k]);
                 u[0][k+1]=(u[1][k+1]-h*alpha(t[k]))/(1.0+lambda*h);
                 u[m][k+1]=(u[m-1][k+1]+h*beta(t[k]))/(1.0+mu*h);
        }

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");

        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                        printf("%.4f    ", u[i][k]);
                printf("\n");
        }

        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");

        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1; k<=4; k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}

结果如下:

cpp 复制代码
r=0.2500.
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9091    1.0000    1.0000    1.0000    1.0000    1.0000
0.0050  0.8884    0.9773    1.0000    1.0000    1.0000    1.0000
0.0075  0.8734    0.9607    0.9943    1.0000    1.0000    1.0000
0.0100  0.8612    0.9473    0.9873    0.9986    1.0000    1.0000
0.0125  0.8507    0.9358    0.9801    0.9961    0.9996    1.0000
0.0150  0.8415    0.9256    0.9730    0.9930    0.9989    0.9998
0.0175  0.8331    0.9164    0.9662    0.9895    0.9976    0.9993
0.0200  0.8255    0.9080    0.9596    0.9857    0.9960    0.9985

......

0.1000  0.6901    0.7591    0.8140    0.8537    0.8778    0.8859
0.2500  0.5230    0.5753    0.6170    0.6474    0.6658    0.6720
0.5000  0.3298    0.3627    0.3890    0.4082    0.4198    0.4237
1.0000  0.1311    0.1442    0.1547    0.1623    0.1669    0.1685

2.2 Crank-Nicolson格式

边界条件采用中心差商。

2.2.1 理论推导

在虚拟节点处得离散方程:

利用差商代替微商:

其中同样越界,将上式代入公式(8),用数值解代替精确解并忽略高阶项,可得离散格式:

公式(9)中第1式可写为

为处理越界问题,设公式(10)对i=0和i=m都成立,即:

将上式与公式(9)中的第3式以及联立,可得:

联合上面两式与公式(10)可得:

上式可写出矩阵形式:

上式可用追赶法求解。

2.2.2 算例实现

抛物型初边值问题:

已知精确解为,其中是方程的根。取

代码如下:


cpp 复制代码
#include<cmath>
#include<stdio.h>
#include<stdlib.h>


int main(int argc, char* argv[])
{
        int m, n, i, k;
        double h, tau, a, lambda,mu,r;
        double *x, *t, *a1, *b, *c, *d, *ans, **u, tkmid;
        double f(double x, double t);
        double phi(double x);
        double alpha(double t);
        double beta(double t);
        double * chase_algorithm(double *a, double *b, double *c, double *d, int n);

        m=10;
        n=400;
        h=1.0/m;
        tau=1.0/n;
        a=1.0;
        lambda=1.0;
        mu=1.0;
        r=a*tau/(h*h);
        printf("r=%.4f\n", r);

        x=(double *)malloc(sizeof(double)*(m+1));
        for(i=0;i<=m;i++)
                x[i] = i*h;

        t=(double *)malloc(sizeof(double)*(n+1));
        for(k=0;k<=n;k++)
                t[k] = k*tau;

        u=(double **)malloc(sizeof(double *)*(m+1));
        for(i=0;i<=m;i++)
                u[i]=(double *)malloc(sizeof(double)*(n+1));

        for(i=0;i<=m;i++)
                u[i][0]=phi(x[i]);

        a1=(double *)malloc(sizeof(double)*(m+1));
        b=(double *)malloc(sizeof(double)*(m+1));
        c=(double *)malloc(sizeof(double)*(m+1));
        d=(double *)malloc(sizeof(double)*(m+1));
        ans=(double *)malloc(sizeof(double)*(m+1));

        for(k=0;k<n;k++)
        {
                tkmid=(t[k]+t[k+1])/2.0;
                for(i=1;i<m;i++)
                {
                         d[i]=r*u[i-1][k]/2.0+(1.0-r)*u[i][k]+r*u[i+1][k]/2.0+tau*f(x[i],tkmid);
                         a1[i]=-r/2.0;
                         b[i]=1.0+r;
                         c[i]=a1[i];
                }
                b[0]=1.0+r+r*lambda*h;
                b[m]=1.0+r+r*mu*h;
                c[0]=-r;
                a1[m]=-r;

                d[0]=(1.0-r-r*lambda*h)*u[0][k]+r*u[1][k]-r*h*alpha(t[k])-r*h*alpha(t[k+1])+tau*f(x[0],tkmid);
                d[m]=r*u[m-1][k]+(1.0-r-r*mu*h)*u[m][k]+r*h*beta(t[k])+r*h*beta(t[k+1])+tau*f(x[m],tkmid);
                ans=chase_algorithm(a1,b,c,d,m+1);
                for(i=0;i<=m;i++)
                         u[i][k+1]=ans[i];
        }

        free(a1);free(b);free(c);free(d);

        printf("t/x     0          0.1       0.2       0.3       0.4       0.5\n");
        for(k=1;k<=8;k++)
        {
                printf("%.4f  ", t[k]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k]);
                printf("\n");
        }
        printf("\n");
        printf("......\n");
        printf("\n");
        printf("0.1000  ");
        for(i=0;i<=m/2;i++)
                printf("%.4f    ", u[i][40]);
        printf("\n");

        for(k=1;k<=4;k=2*k)
        {
                printf("%.4f  ", t[k*100]);
                for(i=0;i<=m/2;i++)
                         printf("%.4f    ", u[i][k*100]);
                printf("\n");
        }

        return 0;
}


double f(double x, double t)
{
        return 0;
}
double phi(double x)
{
        return 1.0;
}
double alpha(double t)
{
        return 0.0;
}
double beta(double t)
{
        return 0.0;
}
double * chase_algorithm(double *a, double *b, double *c, double *d, int n)
{
        int i;
        double * ans, *g, *w, p;

        ans=(double *)malloc(sizeof(double)*n);
        g=(double *)malloc(sizeof(double)*n);
        w=(double *)malloc(sizeof(double)*n);
        g[0]=d[0]/b[0];
        w[0]=c[0]/b[0];

        for(i=1;i<n;i++)
        {
                p=b[i]-a[i]*w[i-1];
                g[i]=(d[i]-a[i]*g[i-1])/p;
                w[i]=c[i]/p;
        }
        ans[n-1]=g[n-1];
        i=n-2;
        do
        {
                ans[i]=g[i]-w[i]*ans[i+1];
                i=i-1;
        }while(i>=0);

        free(g);free(w);

        return ans;
}

结果如下:

cpp 复制代码
r=0.2500
t/x     0          0.1       0.2       0.3       0.4       0.5
0.0025  0.9600    0.9960    0.9996    1.0000    1.0000    1.0000
0.0050  0.9347    0.9868    0.9980    0.9997    1.0000    1.0000
0.0075  0.9164    0.9765    0.9950    0.9991    0.9999    1.0000
0.0100  0.9021    0.9663    0.9910    0.9980    0.9996    0.9999
0.0125  0.8900    0.9567    0.9864    0.9964    0.9992    0.9997
0.0150  0.8795    0.9478    0.9813    0.9944    0.9985    0.9993
0.0175  0.8701    0.9394    0.9762    0.9920    0.9975    0.9988
0.0200  0.8616    0.9315    0.9709    0.9893    0.9963    0.9981

......

0.1000  0.7180    0.7834    0.8350    0.8720    0.8943    0.9017
0.2500  0.5547    0.6054    0.6458    0.6751    0.6929    0.6989
0.5000  0.3618    0.3949    0.4213    0.4404    0.4520    0.4559
1.0000  0.1540    0.1681    0.1793    0.1874    0.1924    0.1940
相关推荐
ytttr8738 小时前
隐马尔可夫模型(HMM)MATLAB实现范例
开发语言·算法·matlab
点云SLAM9 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用
jz_ddk9 小时前
[学习] 卫星导航的码相位与载波相位计算
学习·算法·gps·gnss·北斗
放荡不羁的野指针9 小时前
leetcode150题-动态规划
算法·动态规划
sin_hielo9 小时前
leetcode 1161(BFS)
数据结构·算法·leetcode
一起努力啊~9 小时前
算法刷题-二分查找
java·数据结构·算法
水月wwww10 小时前
【算法设计】动态规划
算法·动态规划
码农水水11 小时前
小红书Java面试被问:Online DDL的INSTANT、INPLACE、COPY算法差异
算法
iAkuya11 小时前
(leetcode)力扣100 34合并K个升序链表(排序,分治合并,优先队列)
算法·leetcode·链表
我是小狼君11 小时前
【查找篇章之三:斐波那契查找】斐波那契查找:用黄金分割去“切”数组
数据结构·算法