目录

Redis 缓存预热、预热数据选取策略、缓存保温、性能边界

缓存预热

  • 热点数据预热:根据业务分析或统计数据,确定热点数据(经常被访问的数据),并将其提前加载到Redis缓存中。可以根据访问频率、访问量或其他业务指标来确定热点数据。
  • 定时预热:可以设置定时任务,周期性地预热Redis缓存。根据业务需求和数据访问模式,可以选择在低峰期或非活动时间段进行预热,以避免对实时请求的影响。

缓存预热可能会导致系统启动时间延长或对底层数据源造成额外的负载。因此,在进行缓存预热时,需要综合考虑系统的性能、可用性和数据更新的实时性要求。

预热数据选取策略

  • 基于历史数据:通过分析历史的数据访问模式和统计信息,确定最常被访问的数据。可以根据数据的访问频率、热度、关联性等指标进行排序,选择前几个数据集进行预热。
  • 基于业务需求:根据业务特点和需求,选择与当前业务操作相关的数据进行预热。例如热门商品、促销商品数据。
  • 基于预测模型:利用机器学习或其他预测模型,预测未来一段时间内可能会被访问的数据。根据预测结果选择相应的数据进行预热。
  • 基于用户行为:如果你的系统有用户登录或个性化功能,可以根据用户的历史行为和偏好,选择与其相关的数据进行预热。

要综合考虑以上不同策略,根据业务需求和数据特点,选择合适的预热数据。可以根据不同的时间段、用户群体或其他因素,采用不同的预热策略。

缓存保温

  • 定期刷新:定期刷新缓存中的数据,以确保数据保持最新和热门。可以设置一个定时任务,周期性地刷新缓存中的数据,使其保持最新状态。
  • 主动加载:在系统启动后或在低峰期,通过后台任务或初始化过程,主动加载缓存中的数据。可以预先加载一些常用的数据或热点数据到缓存中,以满足后续请求的需求。
  • 热点数据保护:根据业务分析或统计数据,确定热点数据(经常被访问的数据),使用合适的缓存策略或设置适当的过期时间,以保持热点数据的持续可用性。

缓存保温也需要权衡系统资源的利用和数据的实时性,避免过度保温导致资源浪费或过时数据的使用。

性能边界

基于上面的性能边界,我们需要根据自身的业务特性和需求来做一些选择和妥协
80%的业务总是集中在20%的数据上面

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
笑远1 小时前
不同服务器架构(x86、ARM、Power、SPARC)对数据库使用的影响
运维·服务器·数据库·架构
Gadus_2 小时前
MySQL事务
数据库·mysql
佳腾_2 小时前
【高性能缓存Redis_中间件】一、快速上手redis缓存中间件
redis·缓存·云原生·中间件·高缓存
武帝为此2 小时前
【MySQL 删除数据详解】
android·数据库·mysql
一只小爪子2 小时前
SQL 语句说明
运维·服务器·数据库·sql·mysql
hezf2 小时前
初识 Prisma-结合NestJS
数据库·后端·nestjs
Elastic 中国社区官方博客2 小时前
Elasticsearch:使用稀疏向量提升相关性
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
老马啸西风2 小时前
Neo4j GDS-08-neo4j GDS 库中路径搜索算法介绍
网络·数据库·算法·云原生·中间件·neo4j·
老马啸西风2 小时前
Neo4j GDS-13-neo4j GDS 库中节点插入算法实现
数据库·算法·云原生·中间件·embedding·neo4j
想要打 Acm 的小周同学呀2 小时前
Redis的过期和内存淘汰策略
数据库·redis·缓存