使用自己训练好的模型YOLOv8进行X-AnyLabeling自动标注

目录

  • [1. 下载项目](#1. 下载项目)
  • [2. 创建环境](#2. 创建环境)
  • [3. 运行程序](#3. 运行程序)
    • [3.1 自行下载和添加官方模型](#3.1 自行下载和添加官方模型)
    • [3.2 使用自己训练好的模型标注自己的数据集](#3.2 使用自己训练好的模型标注自己的数据集)

本机环境:win 10, GPU

1. 下载项目

bash 复制代码
git clone https://github.com/CVHub520/X-AnyLabeling.git

2. 创建环境

仔细查看项目的README文件

bash 复制代码
conda create --name x-anylabeling python==3.8
conda activate x-anylabeling
# gpu
pip install -r requirements-gpu-dev.txt

要调用GPU的话,需要手动修改app_info.py文件

3. 运行程序

bash 复制代码
python anylabeling/app.py

模型的选择可参考docs/zh_cn/model_zoo.md文件,以Segment Anything(ViT-Large)为例进行操作。

没配置科学上网一般都会遇到模型下载失败的情况

3.1 自行下载和添加官方模型

解决方法:自行下载和添加模型的方法 #23

  1. 找到model_zoo.md文件中你想要下载的模型的链接(百度网盘/github),手动下载
  1. 将其配置文件复制一份,然后修改配置文件中的model_path路径
  1. AI标注模型下选择"加载自定义模型",然后选择上一步修改后的配置文件

3.2 使用自己训练好的模型标注自己的数据集

yolov8l目标检测苹果为例

  1. 训练模型,得到yolov8l_apple.onnx模型

    使用YOLOv8训练自己的目标检测数据集(VOC格式/COCO格式)

  2. 复制配置文件,修改配置文件中的model_path路径

  1. AI标注模型下选择"加载自定义模型",选择yolov8l.yaml配置文件
  1. 开始标注
  • 单张图标注
  • 批量标注
相关推荐
古希腊掌管学习的神1 小时前
[机器学习]XGBoost(3)——确定树的结构
人工智能·机器学习
ZHOU_WUYI1 小时前
4.metagpt中的软件公司智能体 (ProjectManager 角色)
人工智能·metagpt
靴子学长2 小时前
基于字节大模型的论文翻译(含免费源码)
人工智能·深度学习·nlp
AI_NEW_COME3 小时前
知识库管理系统可扩展性深度测评
人工智能
海棠AI实验室3 小时前
AI的进阶之路:从机器学习到深度学习的演变(一)
人工智能·深度学习·机器学习
hunteritself3 小时前
AI Weekly『12月16-22日』:OpenAI公布o3,谷歌发布首个推理模型,GitHub Copilot免费版上线!
人工智能·gpt·chatgpt·github·openai·copilot
IT古董4 小时前
【机器学习】机器学习的基本分类-强化学习-策略梯度(Policy Gradient,PG)
人工智能·机器学习·分类
centurysee4 小时前
【最佳实践】Anthropic:Agentic系统实践案例
人工智能
mahuifa4 小时前
混合开发环境---使用编程AI辅助开发Qt
人工智能·vscode·qt·qtcreator·编程ai
四口鲸鱼爱吃盐4 小时前
Pytorch | 从零构建GoogleNet对CIFAR10进行分类
人工智能·pytorch·分类