使用自己训练好的模型YOLOv8进行X-AnyLabeling自动标注

目录

  • [1. 下载项目](#1. 下载项目)
  • [2. 创建环境](#2. 创建环境)
  • [3. 运行程序](#3. 运行程序)
    • [3.1 自行下载和添加官方模型](#3.1 自行下载和添加官方模型)
    • [3.2 使用自己训练好的模型标注自己的数据集](#3.2 使用自己训练好的模型标注自己的数据集)

本机环境:win 10, GPU

1. 下载项目

bash 复制代码
git clone https://github.com/CVHub520/X-AnyLabeling.git

2. 创建环境

仔细查看项目的README文件

bash 复制代码
conda create --name x-anylabeling python==3.8
conda activate x-anylabeling
# gpu
pip install -r requirements-gpu-dev.txt

要调用GPU的话,需要手动修改app_info.py文件

3. 运行程序

bash 复制代码
python anylabeling/app.py

模型的选择可参考docs/zh_cn/model_zoo.md文件,以Segment Anything(ViT-Large)为例进行操作。

没配置科学上网一般都会遇到模型下载失败的情况

3.1 自行下载和添加官方模型

解决方法:自行下载和添加模型的方法 #23

  1. 找到model_zoo.md文件中你想要下载的模型的链接(百度网盘/github),手动下载
  1. 将其配置文件复制一份,然后修改配置文件中的model_path路径
  1. AI标注模型下选择"加载自定义模型",然后选择上一步修改后的配置文件

3.2 使用自己训练好的模型标注自己的数据集

yolov8l目标检测苹果为例

  1. 训练模型,得到yolov8l_apple.onnx模型

    使用YOLOv8训练自己的目标检测数据集(VOC格式/COCO格式)

  2. 复制配置文件,修改配置文件中的model_path路径

  1. AI标注模型下选择"加载自定义模型",选择yolov8l.yaml配置文件
  1. 开始标注
  • 单张图标注
  • 批量标注
相关推荐
MarvinP1 分钟前
《Seq2Time: Sequential Knowledge Transfer for Video LLMTemporal Grounding》
人工智能·计算机视觉
AORO202530 分钟前
适合户外探险、物流、应急、工业,五款三防智能手机深度解析
网络·人工智能·5g·智能手机·制造·信息与通信
铉铉这波能秀1 小时前
如何在Android Studio中使用Gemini进行AI Coding
android·java·人工智能·ai·kotlin·app·android studio
rongqing20191 小时前
Google 智能体设计模式:探索与发现
人工智能·设计模式
黎燃2 小时前
两周以上天气可预报吗?——用 NVIDIA Earth-2 打开 AI 次季节预测新篇章
人工智能
源码师傅2 小时前
最新短视频AI智能营销询盘获客系统源码及搭建教程 源码开源可二次开发
人工智能·开源·短视频智能获客源码·获客询盘营销系统源码·获客系统源码·短视频智能营销获客系统
黎燃2 小时前
AI Agent 全景:从 LLM 到自主智能体系统的 7 层深度实践
人工智能
可触的未来,发芽的智生2 小时前
触摸未来2025.10.09:记忆的突围,从64个神经元到人工海马体神经网络
人工智能·python·神经网络·机器学习·架构
一个会的不多的人2 小时前
数字化转型:概念性名词浅谈(第七十二讲)
大数据·人工智能·制造·数字化转型
数据和云2 小时前
从Databricks和Supabase看AI时代的中国数据库启示
数据库·人工智能