使用自己训练好的模型YOLOv8进行X-AnyLabeling自动标注

目录

  • [1. 下载项目](#1. 下载项目)
  • [2. 创建环境](#2. 创建环境)
  • [3. 运行程序](#3. 运行程序)
    • [3.1 自行下载和添加官方模型](#3.1 自行下载和添加官方模型)
    • [3.2 使用自己训练好的模型标注自己的数据集](#3.2 使用自己训练好的模型标注自己的数据集)

本机环境:win 10, GPU

1. 下载项目

bash 复制代码
git clone https://github.com/CVHub520/X-AnyLabeling.git

2. 创建环境

仔细查看项目的README文件

bash 复制代码
conda create --name x-anylabeling python==3.8
conda activate x-anylabeling
# gpu
pip install -r requirements-gpu-dev.txt

要调用GPU的话,需要手动修改app_info.py文件

3. 运行程序

bash 复制代码
python anylabeling/app.py

模型的选择可参考docs/zh_cn/model_zoo.md文件,以Segment Anything(ViT-Large)为例进行操作。

没配置科学上网一般都会遇到模型下载失败的情况

3.1 自行下载和添加官方模型

解决方法:自行下载和添加模型的方法 #23

  1. 找到model_zoo.md文件中你想要下载的模型的链接(百度网盘/github),手动下载
  1. 将其配置文件复制一份,然后修改配置文件中的model_path路径
  1. AI标注模型下选择"加载自定义模型",然后选择上一步修改后的配置文件

3.2 使用自己训练好的模型标注自己的数据集

yolov8l目标检测苹果为例

  1. 训练模型,得到yolov8l_apple.onnx模型

    使用YOLOv8训练自己的目标检测数据集(VOC格式/COCO格式)

  2. 复制配置文件,修改配置文件中的model_path路径

  1. AI标注模型下选择"加载自定义模型",选择yolov8l.yaml配置文件
  1. 开始标注
  • 单张图标注
  • 批量标注
相关推荐
阿_旭16 小时前
【PyTorch】20个核心概念详解:从基础到实战的深度学习指南
人工智能·pytorch·深度学习
Guheyunyi16 小时前
视频安全监测系统的三大核心突破
大数据·运维·服务器·人工智能·安全·音视频
石像鬼₧魂石16 小时前
HexStrike AI 理想操作流程清单(完整功能版)
linux·人工智能·windows·学习·ubuntu
阿里云大数据AI技术16 小时前
【NeurIPS2025】阿里云PAI团队动态数据调度方案Skrull 入选
人工智能
硬汉嵌入式16 小时前
VisualGDB 6.1 Beta5版本,正式引入全新的高速AI编辑引擎,专为C/C++项目量身打造
人工智能·visualgdb
乾元16 小时前
AI 驱动的入侵检测与异常会话判别:从规则到行为分析前言:从“捕获敌人”到“守卫秩序”
运维·网络·人工智能·网络协议·安全
泰迪智能科技0117 小时前
分享|深化产教融合丨图书联合编写招募直播
人工智能
沐雪架构师17 小时前
OpenAgents:让AI智能体Agent像人类一样联网协作
人工智能
我要充满正能量17 小时前
拥抱AI Coding,让我更自信能胜任我的工作
人工智能·ai编程·claude
安达发公司17 小时前
安达发|效率革命:APS自动排程,为“金属丛林”安装精准导航
大数据·运维·人工智能·aps高级排程·aps排程软件·安达发aps·aps自动排程