pandas 中的 tolist() 和 to_list()

  • 在使用pandas的时候,有时候会需要将pandas中的数据类型转换为python中的list,而pandas也提供了tolist()to_list()这两个方法来实现这一需求

  • 几乎可以认为pandas中的tolist()to_list()用法没有差别

  • 还顺便介绍了numpy中的tolist()方法,其主要特点是可以作用于任意维度的数组

1. tolist()

	pandas.api.extensions.ExtensionArray.tolist()
		
		Return a list of the values.
 		
 		These are each a scalar type, which is a Python scalar (for str, int, float) or 
 		a pandas scalar (for Timestamp/Timedelta/Interval/Period)
python 复制代码
>>> arr = pd.array([1, 2, 3])
>>> arr.tolist()
[1, 2, 3]

这是官方文档上对于tolist()的说明与示例。从中可以看出:

  • 该方法属于pandas扩展的,从其所属的pandas.api.extensions.ExtensionArray即可看出
  • 该方法返回一个listlist中元素的类型既可以为python的数据类型,也可以pandas中的类型,(在较早的版本中,返回列表中的元素类型为numpy类型或者pandas类型)

下面用示例来介绍tolist()方法的使用

python 复制代码
df = pd.DataFrame(
    {"A": [1, 2, 3], "B": [4, 5, 6]},
    index=["x", "y", "z"]
)
python 复制代码
   A  B
x  1  4
y  2  5
z  3  6

1.1. 不能直接用于DataFrame

python 复制代码
df.tolist()
# AttributeError: 'DataFrame' object has no attribute 'tolist'

1.2. 用于indexcolumn属性上

python 复制代码
index_tolist = df.index.tolist()
print(index_tolist)
print(type(index_tolist))
print(type(index_tolist[0]))

# ['x', 'y', 'z']
# <class 'list'>
# <class 'str'>
python 复制代码
columns_tolist = df.columns.tolist()
print(columns_tolist)
print(type(columns_tolist))
print(type(columns_tolist[0]))

# ['A', 'B']
# <class 'list'>
# <class 'str'>

1.3. 用于行列数据上

python 复制代码
row_tolist = df.iloc[0].tolist()
print(row_tolist)
print(type(row_tolist))
print(type(row_tolist[0]))

# [1, 4]
# <class 'list'>
# <class 'int'>
python 复制代码
col_tolist = df["A"].tolist()
print(col_tolist)
print(type(col_tolist))
print(type(col_tolist[0]))

# [1, 2, 3]
# <class 'list'>
# <class 'int'>

此处也表明tolist()Series()的用法

1.4. 用在多维索引上

python 复制代码
index_df = pd.DataFrame(
    [["bar", "one"], ["bar", "two"], ["foo", "one"], ["foo", "two"]],
    columns=["first", "second"],
)

mul_index = pd.MultiIndex.from_frame(index_df)
mul_df = pd.DataFrame(np.random.randn(4, 3), index=mul_index)
python 复制代码
                     0         1         2
first second                              
bar   one    -0.625643  0.533483  0.066657
      two    -1.759180  1.116185  0.264087
foo   one    -0.773947 -1.649559  1.865090
      two     1.200301 -3.090575 -1.464554
python 复制代码
mul_index_tolist = mul_df.index.tolist()
print(mul_index_tolist)
print(type(mul_index_tolist))
print(type(mul_index_tolist[0]))
print(type(mul_index_tolist[0][0]))

# [('bar', 'one'), ('bar', 'two'), ('foo', 'one'), ('foo', 'two')]
# <class 'list'>
# <class 'tuple'>
# <class 'str'>

2. to_list()

	pandas.Index.to_list()
	pandas.Series.to_list()
		
		Return a list of the values.
 		
 		These are each a scalar type, which is a Python scalar (for str, int, float) or 
 		a pandas scalar (for Timestamp/Timedelta/Interval/Period)

从官方文档可以看出,to_list()tolist() 的解释说明完全一致,所不同的是tolist()属于pandas扩展方法,而to_list()则属于IndexSeries类型的方法。

2.1. 不能直接用于DataFrame

python 复制代码
df.to_list()
# AttributeError: 'DataFrame' object has no attribute 'to_list'

2.2. 用于indexcolumn属性上

python 复制代码
index_to_list = df.index.to_list()
print(index_to_list)
print(type(index_to_list))
print(type(index_to_list[0]))

# ['x', 'y', 'z']
# <class 'list'>
# <class 'str'>
python 复制代码
columns_to_list = df.columns.to_list()
print(columns_to_list)
print(type(columns_to_list))
print(type(columns_to_list[0]))

# ['A', 'B']
# <class 'list'>
# <class 'str'>

2.3. 用于行列数据上

python 复制代码
row_to_list = df.iloc[0].to_list()
print(row_to_list)
print(type(row_to_list))
print(type(row_to_list[0]))

# [1, 4]
# <class 'list'>
# <class 'int'>
python 复制代码
col_to_list = df["A"].to_list()
print(col_to_list)
print(type(col_to_list))
print(type(col_to_list[0]))

# [1, 2, 3]
# <class 'list'>
# <class 'int'>

此处也表明to_list()Series()上的用法

2.4. 用在多维索引上

python 复制代码
index_df = pd.DataFrame(
    [["bar", "one"], ["bar", "two"], ["foo", "one"], ["foo", "two"]],
    columns=["first", "second"],
)

mul_index = pd.MultiIndex.from_frame(index_df)
mul_df = pd.DataFrame(np.random.randn(4, 3), index=mul_index)
python 复制代码
                     0         1         2
first second                              
bar   one    -0.625643  0.533483  0.066657
      two    -1.759180  1.116185  0.264087
foo   one    -0.773947 -1.649559  1.865090
      two     1.200301 -3.090575 -1.464554
python 复制代码
mul_index_to_list = mul_df.index.to_list()

print(mul_index_to_list)
print(type(mul_index_to_list))
print(type(mul_index_to_list[0]))
print(type(mul_index_to_list[0][0]))

# [('bar', 'one'), ('bar', 'two'), ('foo', 'one'), ('foo', 'two')]
# <class 'list'>
# <class 'tuple'>
# <class 'str'>

3. numpy 中的 tolist()

numpy.ndarray.tolist()

	Return the array as an a.ndim-levels deep nested list of Python scalars.

	Return a copy of the array data as a (nested) Python list. 
	Data items are converted to the nearest compatible builtin Python type, via the item function.
	If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python scalar.

numpy 中的 tolist() 着重强调了两点:

  • 列表中的元素类型都是python数据类型
  • 可以对0维、1维和2维以及更高维度的numpy.ndarray进行转换,这一点是pandas中的tolistto_list所不具备的
python 复制代码
a = np.uint32([1, 2])
a_list = list(a)
a_list    # [1, 2]
type(a_list[0])   # <class 'numpy.uint32'>

a_tolist = a.tolist()
a_tolist   # [1, 2]
type(a_tolist[0])  # <class 'int'>
python 复制代码
a = np.array([[1, 2], [3, 4]])
list(a)   # [array([1, 2]), array([3, 4])]
a.tolist()   # [[1, 2], [3, 4]]
python 复制代码
a = np.array(1)
# list(a)
# Traceback (most recent call last):
#  ...
# TypeError: iteration over a 0-d array
a.tolist()    # 1
相关推荐
~yY…s<#>1 小时前
【刷题17】最小栈、栈的压入弹出、逆波兰表达式
c语言·数据结构·c++·算法·leetcode
XuanRanDev2 小时前
【每日一题】LeetCode - 三数之和
数据结构·算法·leetcode·1024程序员节
代码猪猪傻瓜coding2 小时前
力扣1 两数之和
数据结构·算法·leetcode
神奇夜光杯3 小时前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
南宫生4 小时前
贪心算法习题其三【力扣】【算法学习day.20】
java·数据结构·学习·算法·leetcode·贪心算法
weixin_432702264 小时前
代码随想录算法训练营第五十五天|图论理论基础
数据结构·python·算法·深度优先·图论
passer__jw7675 小时前
【LeetCode】【算法】283. 移动零
数据结构·算法·leetcode
爱吃生蚝的于勒6 小时前
深入学习指针(5)!!!!!!!!!!!!!!!
c语言·开发语言·数据结构·学习·计算机网络·算法
羊小猪~~6 小时前
数据结构C语言描述2(图文结合)--有头单链表,无头单链表(两种方法),链表反转、有序链表构建、排序等操作,考研可看
c语言·数据结构·c++·考研·算法·链表·visual studio
脉牛杂德7 小时前
多项式加法——C语言
数据结构·c++·算法