MongoDB聚合运算符:$push

MongoDB聚合运算符:$push

文章目录

  • [MongoDB聚合运算符:push](#MongoDB聚合运算符:push)
    • 语法
    • 举例
      • [在`setWindowFields\`阶段使用](#在`setWindowFields`阶段使用)

$push聚合运算符返回表达式应用到文档后的值产生的数组。可以应用于 $bucket$bucketAuto$group$setWindowFields等阶段。

语法

js 复制代码
{ $push: <expression> }

$push可以用来比较任何类型的值,针对不同的类型使用特定的BSON比较顺序。

举例

sales集合有下列文档:

json 复制代码
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
{ "_id" : 6, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-15T12:05:10Z") }
{ "_id" : 7, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T14:12:12Z") }

下面的聚合操作根据日期字段date的日和年对文档进行分组,使用$push累加器对分组内的条目销售量进行计算:

js 复制代码
db.sales.aggregate(
   [
   { $sort: { date: 1, item: 1 } },
   {
       $group:
         {
           _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } },
           itemsSold: { $push:  { item: "$item", quantity: "$quantity" } }
         }
     }
   ]
)

操作返回下面的结果:

json 复制代码
{
   "_id" : { "day" : 46, "year" : 2014 },
   "itemsSold" : [
      { "item" : "abc", "quantity" : 10 },
      { "item" : "xyz", "quantity" : 10 },
      { "item" : "xyz", "quantity" : 5 },
      { "item" : "xyz", "quantity" : 10 }
   ]
}
{
   "_id" : { "day" : 34, "year" : 2014 },
   "itemsSold" : [
      { "item" : "jkl", "quantity" : 1 },
      { "item" : "xyz", "quantity" : 5 }
   ]
}
{
   "_id" : { "day" : 1, "year" : 2014 },
   "itemsSold" : [ { "item" : "abc", "quantity" : 2 } ]
}

$setWindowFields阶段使用

使用下面的脚本创建cakeSales集合,包含了在加利福尼亚(CA)和华盛顿(WA)的蛋糕销售记录:

js 复制代码
db.cakeSales.insertMany( [
   { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
     state: "CA", price: 13, quantity: 120 },
   { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
     state: "WA", price: 14, quantity: 140 },
   { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
     state: "CA", price: 12, quantity: 145 },
   { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
     state: "WA", price: 13, quantity: 104 },
   { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
     state: "CA", price: 41, quantity: 162 },
   { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
     state: "WA", price: 43, quantity: 134 }
] )

下面的聚合在$setWindowFields阶段使用$push输出每个州的蛋糕销售量的数组:

js 复制代码
db.cakeSales.aggregate( [
   {
      $setWindowFields: {
         partitionBy: "$state",
         sortBy: { orderDate: 1 },
         output: {
            quantitiesForState: {
               $push: "$quantity",
               window: {
                  documents: [ "unbounded", "current" ]
               }
            }
         }
      }
   }
] )

在本例中:

  • partitionBy: "$state"根据state对集合中的文档进行分区,分为两个区CAWA
  • sortBy: { orderDate: 1 }根据orderDate对分区内的文档由小到大进行排序,最早的orderDate排在最前面。
  • output使用$push对窗口中的文档进行计算,得到销售量数组。

执行的结果如下:

json 复制代码
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
  "state" : "CA", "price" : 41, "quantity" : 162, "quantitiesForState" : [ 162 ] }
{ "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
  "state" : "CA", "price" : 13, "quantity" : 120, "quantitiesForState" : [ 162, 120 ] }
{ "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
  "state" : "CA", "price" : 12, "quantity" : 145, "quantitiesForState" : [ 162, 120, 145 ] }
{ "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
  "state" : "WA", "price" : 43, "quantity" : 134, "quantitiesForState" : [ 134 ] }
{ "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
  "state" : "WA", "price" : 13, "quantity" : 104, "quantitiesForState" : [ 134, 104 ] }
{ "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
  "state" : "WA", "price" : 14, "quantity" : 140, "quantitiesForState" : [ 134, 104, 140 ] }
相关推荐
广州智造1 小时前
OptiStruct实例:3D实体转子分析
数据库·人工智能·算法·机器学习·数学建模·3d·性能优化
技术宝哥4 小时前
Redis(2):Redis + Lua为什么可以实现原子性
数据库·redis·lua
学地理的小胖砸6 小时前
【Python 操作 MySQL 数据库】
数据库·python·mysql
dddaidai1236 小时前
Redis解析
数据库·redis·缓存
数据库幼崽6 小时前
MySQL 8.0 OCP 1Z0-908 121-130题
数据库·mysql·ocp
Amctwd6 小时前
【SQL】如何在 SQL 中统计结构化字符串的特征频率
数据库·sql
betazhou7 小时前
基于Linux环境实现Oracle goldengate远程抽取MySQL同步数据到MySQL
linux·数据库·mysql·oracle·ogg
lyrhhhhhhhh7 小时前
Spring 框架 JDBC 模板技术详解
java·数据库·spring
喝醉的小喵9 小时前
【mysql】并发 Insert 的死锁问题 第二弹
数据库·后端·mysql·死锁
付出不多9 小时前
Linux——mysql主从复制与读写分离
数据库·mysql