Pytorch 获取当前模型占用的 GPU显存的大小

1. 背景

AI 训练模型时需要知道模型占用显存的大小,以及剩余显存大小

2. 代码

bash 复制代码
import torch


# 检查GPU是否可用
if torch.cuda.is_available():
    # 获取当前设备
    device = torch.cuda.current_device()
    # 创建一个虚拟model
    model = torch.nn.Linear(25600, 20000, 20000).cuda()

    # 获取当前模型占用的显存大小
    model_memory = torch.cuda.memory_allocated()
    # 获取PyTorch预留的显存大小
    pytorch_memory = torch.cuda.max_memory_allocated() - model_memory
    # 打印模型占用的显存大小和PyTorch预留的显存大小
    print(f"Model memory usage: {model_memory / (1024 ** 3):.2f} GB")
    print(f"PyTorch memory usage: {pytorch_memory / (1024 ** 3):.2f} GB")

    # 获取已使用的显存大小
    total_memory = torch.cuda.get_device_properties(device=device).total_memory
    # 获取剩余的显存大小
    free_memory = total_memory - model_memory
    print(f"剩余的显存大小:{free_memory / (1024 ** 3):.2f} GB")

    # 释放虚拟张量占用的显存
    del model
    torch.cuda.empty_cache()
else:
    print("GPU is not available.")

运行结果:

bash 复制代码
Model memory usage: 1.91 GB
PyTorch memory usage: 0.00 GB
剩余的显存大小:3.89 GB
相关推荐
喝拿铁写前端1 小时前
别再让 AI 直接写页面了:一种更稳的中后台开发方式
前端·人工智能
Swizard2 小时前
别再让你的 Python 傻等了:三分钟带你通过 asyncio 实现性能起飞
python
tongxianchao2 小时前
UPDP: A Unified Progressive Depth Pruner for CNN and Vision Transformer
人工智能·cnn·transformer
塔能物联运维3 小时前
设备边缘计算任务调度卡顿 后来动态分配CPU/GPU资源
人工智能·边缘计算
过期的秋刀鱼!3 小时前
人工智能-深度学习-线性回归
人工智能·深度学习
木头左3 小时前
高级LSTM架构在量化交易中的特殊入参要求与实现
人工智能·rnn·lstm
IE064 小时前
深度学习系列84:使用kokoros生成tts语音
人工智能·深度学习
欧阳天羲4 小时前
#前端开发未来3年(2026-2028)核心趋势与AI应用实践
人工智能·前端框架
IE064 小时前
深度学习系列83:使用outetts
人工智能·深度学习
水中加点糖4 小时前
源码运行RagFlow并实现AI搜索(文搜文档、文搜图、视频理解)与自定义智能体(一)
人工智能·二次开发·ai搜索·文档解析·ai知识库·ragflow·mineru