使用自定义OCR提升UIE-X检测效果:结合PaddleOCR和UIE模型进行文档信息提取

在实际应用中,识别文档中的特定信息对于许多任务至关重要,例如发票识别、表格信息提取等。然而,由于文档的多样性和复杂性,传统的光学字符识别(OCR)技术可能无法准确识别文档中的信息。为了解决这个问题,我们可以结合自定义的OCR技术和信息提取(IE)模型来提升文档信息的检测效果。本文将介绍如何使用PaddleOCR和UIE模型(Unified Information Extraction,统一信息提取)来进行文档信息提取,并提供代码示例。

1. 准备工作

首先,我们需要安装PaddleOCR和PaddleNLP库,您可以使用以下命令进行安装:

python 复制代码
pip install --upgrade paddlenlp

2. 使用PaddleOCR进行文本识别

PaddleOCR是一个基于PaddlePaddle的开源OCR工具,它支持多语言文本识别,并且提供了多种预训练模型。在本文中,我们将使用PaddleOCR来识别文档中的文本信息。

python 复制代码
from paddleocr import PaddleOCR

ocr = PaddleOCR(use_angle_cls=True, lang="ch", ocr_version="PP-OCRv4")
img_path = 'your_image.jpg'
ocr_result = ocr.ocr(img_path, rec=True)

以上代码将使用PaddleOCR对指定图片进行文本识别,并返回识别结果。

3. 使用UIE模型进行信息提取

PaddleNLP提供了一个名为UIE(Unified Information Extraction)的模型,用于从文本中提取结构化信息。我们可以结合PaddleOCR的识别结果和UIE模型来提取文档中的特定信息。

python 复制代码
from paddlenlp import Taskflow

schema = ["taxpayer_identification_number", "invoice_date", "total_amount", "payee"]
layout = []  # OCR结果组成的layout参数

for res in ocr_result:
    for item in res:
        x1, y1 = item[0][0]
        x2, y2 = item[0][2]
        text = item[1][0]
        layout.append(([x1, y1, x2, y2], text))

ie_task = Taskflow("information_extraction", schema=schema, model="uie-x-base", layout_analysis=True)
ie_result = ie_task({"doc": img_path, "layout": layout})

print(ie_result)

在上述代码中,我们将OCR识别结果转换为UIE模型所需的layout参数,并使用UIE模型进行信息提取。最终,我们将得到提取的结构化信息。

通过结合自定义的OCR技术和信息提取模型,我们可以更准确地从文档中提取特定信息,从而提升信息检测的效果。

以上就是使用PaddleOCR和UIE模型进行文档信息提取的示例代码。希望本文能够对您有所帮助!

相关推荐
中科逸视OCR2 天前
当OCR遇见NLP:解析深度学习发票识别中的语义理解与关系抽取模块
nlp·ocr·发票识别
EkihzniY3 天前
OCR 识别技术:各行业信息化转型的 “加速器”
ocr
虚行3 天前
一个海康相机OCR的程序
ocr
kevin 14 天前
智能文档处理业务,应该选择大模型还是OCR专用小模型?
ocr
空影星4 天前
Pot Translator,跨平台划词翻译与OCR工具
python·ocr·电脑
私人珍藏库5 天前
[Windows] 天若OCR开源版 6.0.0
ocr
ONLYOFFICE5 天前
如何在ONLYOFFICE中使用OCR工具:轻松识别图片和PDF中的文字
编辑器·ocr·office
晨欣5 天前
Umi-OCR:Windows7和Linux上可免费离线使用的OCR应用!
linux·运维·ocr
doris6107 天前
资产 OCR 识别:批量导入效率提升指南
ocr·资产管理·固定资产管理系统
TextIn智能文档云平台7 天前
复杂PDF文档结构化提取全攻略——从OCR到大模型知识库构建
pdf·ocr