es的聚合查询(二)

1、es常用的聚合查询有三种

桶聚合

指标聚合

管道聚合

首先我们创建一个product的索引,并插入数据

bash 复制代码
PUT /product
{
  "mappings": {
    "properties": {
      "category": { "type": "keyword" },
      "price": { "type": "float" },
      "timestamp": { "type": "date" }
    }
  }
}


POST /product/_doc/1
{
  "category": "iphone",
  "price": 1200,
  "timestamp": "2024-04-01"
}

POST /product/_doc/2
{
  "category": "Electronics",
  "price": 800,
  "timestamp": "2024-04-10"
}

POST /product/_doc/3
{
  "category": "Clothing",
  "price": 50,
  "timestamp": "2024-04-10"
}

POST /product/_doc/4
{
  "category": "Clothing",
  "price": 30,
  "timestamp": "2024-04-15"
}

POST /product/_doc/5
{
  "category": "Electronics",
  "price": 1500,
  "timestamp": "2024-05-21"
}

2、桶聚合:常用的桶聚合如下

Terms聚合 - 类似SQL的group by,根据字段唯一值分组;

Histogram聚合 - 根据数值间隔分组,例如: 价格按100间隔分组,0、100、200、300等等;

Date histogram聚合 - 根据时间间隔分组,例如:按月、按天、按小时分组;

Range聚合 - 按数值范围分组,例如: 0-150一组,150-200一组,200-500一组;

比如:我想根据category字段唯一值来分组

bash 复制代码
GET /product/_search?size=0
{
  "aggs": {
    "shop": { //聚合查询的名字,随便取个名字
      "terms": { //聚合类型为: terms
        "field": "category"  //要聚合分组的字段
      }
    }
  }
}

以上好比sql为

bash 复制代码
select category, count(*) from product group by category

结果为:

bash 复制代码
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "shop" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing", //key是category的各种情况
          "doc_count" : 2 //是每种category的次数
        },
        {
          "key" : "Electronics",
          "doc_count" : 2
        },
        {
          "key" : "iphone",
          "doc_count" : 1
        }
      ]
    }
  }
}

以上这种写法经常用到下拉框列表的聚合分组查询。

2、按照产品类别进行分组,并计算每个类别下的平均价格

bash 复制代码
GET /product/_search
{
  "size": 0,
  "aggs": {
    "category_buckets": {
      "terms": {
        "field": "category"
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

结果如下:

bash 复制代码
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "category_buckets" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 40.0
          }
        },
        {
          "key" : "Electronics",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 1150.0
          }
        },
        {
          "key" : "iphone",
          "doc_count" : 1,
          "avg_price" : {
            "value" : 1200.0
          }
        }
      ]
    }
  }
}

3、指标聚合:指标聚合对文档中的数值字段执行统计操作,如求和、平均值、最大值、最小值等

比如:计算所有产品的平均价格。

bash 复制代码
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "avg_price" : {
      "value" : 716.0
    }
  }
}

比如:计算所有商品的最大价格

bash 复制代码
GET /product/_search
{
  "size": 0,
  "aggs": {
    "avg_price": {
      "max": {
        "field": "price"
      }
    }
  }
}

4、写一个复杂的聚合查询,并配合query查询

比如我想筛出 category = Electronics 和Clothing 的商品,然后在这基础上对category分组,求分组后category的平均值及合计两个字段

bash 复制代码
GET /product/_search
{
  "size": 0, //size=0代表不需要返回query查询结果,仅仅返回aggs统计结果
  "query": { //query查询category=Electronics 和Clothing的数据
    "terms": {
      "category": [
        "Electronics",
        "Clothing"
      ]
    }
  },
  "aggs": { //开始对category字段聚合分组
    "product_category": { //聚合名称
      "terms": {
        "field": "category"
      },
      "aggs": { //聚合名称  
        "avg_price": {
          "avg": { // 指标聚合类型为avg
            "field": "price"
          }
        },
        "sum_price":{ //聚合名称
          "sum": { //指标聚合类型为sum
            "field": "price"
          }
        }
      }
    }
  }
}

结果如下:

bash 复制代码
{
  "took" : 27,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "product_category" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 40.0
          },
          "sum_price" : {
            "value" : 80.0
          }
        },
        {
          "key" : "Electronics",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 1150.0
          },
          "sum_price" : {
            "value" : 2300.0
          }
        }
      ]
    }
  }
}

后续更新管道聚合

相关推荐
_OP_CHEN几秒前
算法基础篇:(十二)基础算法之倍增思想:从快速幂到大数据运算优化
大数据·c++·算法·acm·算法竞赛·倍增思想
武子康27 分钟前
大数据-159 Apache Kylin Cube 实战:Hive 装载与预计算加速(含 Cuboid/实时 OLAP,Kylin 4.x)
大数据·后端·apache kylin
lisw051 小时前
边缘计算与云计算!
大数据·人工智能·机器学习·云计算·边缘计算
森语林溪1 小时前
数据“洪灾”变“水利”——古人“格物致知”的大数据实践
大数据
2501_941144031 小时前
边缘计算重塑数字世界:智能化时代的新型技术架构
elasticsearch
Hello.Reader1 小时前
Flink CDC 用 Db2 CDC 实时同步数据到 Elasticsearch
大数据·elasticsearch·flink
老蒋新思维2 小时前
创客匠人 2025 高峰论谈(11.22-25):AI 智能体重构创始人 IP 打造与知识变现的管理逻辑
大数据·网络·人工智能·网络协议·tcp/ip·重构·知识付费
TDengine (老段)4 小时前
TDengine 字符串函数 TO_BASE64 用户手册
android·大数据·服务器·物联网·时序数据库·tdengine·涛思数据
啊吧怪不啊吧4 小时前
算法王冠上的明珠——动态规划之斐波那契数列问题
大数据·算法·动态规划
源码之家12 小时前
基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏 大数据毕业设计(附源码)✅
大数据·爬虫·python·随机森林·数据分析·spark·flask