es的聚合查询(二)

1、es常用的聚合查询有三种

桶聚合

指标聚合

管道聚合

首先我们创建一个product的索引,并插入数据

bash 复制代码
PUT /product
{
  "mappings": {
    "properties": {
      "category": { "type": "keyword" },
      "price": { "type": "float" },
      "timestamp": { "type": "date" }
    }
  }
}


POST /product/_doc/1
{
  "category": "iphone",
  "price": 1200,
  "timestamp": "2024-04-01"
}

POST /product/_doc/2
{
  "category": "Electronics",
  "price": 800,
  "timestamp": "2024-04-10"
}

POST /product/_doc/3
{
  "category": "Clothing",
  "price": 50,
  "timestamp": "2024-04-10"
}

POST /product/_doc/4
{
  "category": "Clothing",
  "price": 30,
  "timestamp": "2024-04-15"
}

POST /product/_doc/5
{
  "category": "Electronics",
  "price": 1500,
  "timestamp": "2024-05-21"
}

2、桶聚合:常用的桶聚合如下

Terms聚合 - 类似SQL的group by,根据字段唯一值分组;

Histogram聚合 - 根据数值间隔分组,例如: 价格按100间隔分组,0、100、200、300等等;

Date histogram聚合 - 根据时间间隔分组,例如:按月、按天、按小时分组;

Range聚合 - 按数值范围分组,例如: 0-150一组,150-200一组,200-500一组;

比如:我想根据category字段唯一值来分组

bash 复制代码
GET /product/_search?size=0
{
  "aggs": {
    "shop": { //聚合查询的名字,随便取个名字
      "terms": { //聚合类型为: terms
        "field": "category"  //要聚合分组的字段
      }
    }
  }
}

以上好比sql为

bash 复制代码
select category, count(*) from product group by category

结果为:

bash 复制代码
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "shop" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing", //key是category的各种情况
          "doc_count" : 2 //是每种category的次数
        },
        {
          "key" : "Electronics",
          "doc_count" : 2
        },
        {
          "key" : "iphone",
          "doc_count" : 1
        }
      ]
    }
  }
}

以上这种写法经常用到下拉框列表的聚合分组查询。

2、按照产品类别进行分组,并计算每个类别下的平均价格

bash 复制代码
GET /product/_search
{
  "size": 0,
  "aggs": {
    "category_buckets": {
      "terms": {
        "field": "category"
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

结果如下:

bash 复制代码
{
  "took" : 5,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "category_buckets" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 40.0
          }
        },
        {
          "key" : "Electronics",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 1150.0
          }
        },
        {
          "key" : "iphone",
          "doc_count" : 1,
          "avg_price" : {
            "value" : 1200.0
          }
        }
      ]
    }
  }
}

3、指标聚合:指标聚合对文档中的数值字段执行统计操作,如求和、平均值、最大值、最小值等

比如:计算所有产品的平均价格。

bash 复制代码
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "avg_price" : {
      "value" : 716.0
    }
  }
}

比如:计算所有商品的最大价格

bash 复制代码
GET /product/_search
{
  "size": 0,
  "aggs": {
    "avg_price": {
      "max": {
        "field": "price"
      }
    }
  }
}

4、写一个复杂的聚合查询,并配合query查询

比如我想筛出 category = Electronics 和Clothing 的商品,然后在这基础上对category分组,求分组后category的平均值及合计两个字段

bash 复制代码
GET /product/_search
{
  "size": 0, //size=0代表不需要返回query查询结果,仅仅返回aggs统计结果
  "query": { //query查询category=Electronics 和Clothing的数据
    "terms": {
      "category": [
        "Electronics",
        "Clothing"
      ]
    }
  },
  "aggs": { //开始对category字段聚合分组
    "product_category": { //聚合名称
      "terms": {
        "field": "category"
      },
      "aggs": { //聚合名称  
        "avg_price": {
          "avg": { // 指标聚合类型为avg
            "field": "price"
          }
        },
        "sum_price":{ //聚合名称
          "sum": { //指标聚合类型为sum
            "field": "price"
          }
        }
      }
    }
  }
}

结果如下:

bash 复制代码
{
  "took" : 27,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 4,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "product_category" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "Clothing",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 40.0
          },
          "sum_price" : {
            "value" : 80.0
          }
        },
        {
          "key" : "Electronics",
          "doc_count" : 2,
          "avg_price" : {
            "value" : 1150.0
          },
          "sum_price" : {
            "value" : 2300.0
          }
        }
      ]
    }
  }
}

后续更新管道聚合

相关推荐
starandsea4 小时前
gitlab解决传过大文件后删除导致pack过大问题
大数据·elasticsearch·gitlab
拉姆哥的小屋6 小时前
时间序列早期分类中的置信度累积问题:从ECE-C到时序依赖建模
大数据·人工智能
大海绵啤酒肚6 小时前
EL(F)K日志分析系统
运维·elasticsearch·云计算
蚁巡信息巡查系统6 小时前
政府网站与政务新媒体监测服务主要是做什么的?
大数据·人工智能
饼干吖6 小时前
hadoop安装
大数据·hadoop·教程
私域实战笔记9 小时前
选企业微信服务商哪家好?从工具适配与行业案例看选型逻辑
大数据·人工智能·企业微信
AI企微观察9 小时前
企业微信社群运营玩法有哪些?企业微信社群工具有哪些功能?——从拉新到留存的玩法设计与工具支撑
大数据·人工智能
金融小师妹10 小时前
OpenAI拟借AI估值重构浪潮冲击1.1万亿美元IPO——基于市场情绪因子与估值量化模型的深度分析
大数据·人工智能·深度学习·1024程序员节
wudl556611 小时前
Flink Keyed State 详解之二
大数据·flink
IT学长编程11 小时前
计算机毕业设计 基于Python的热门游戏推荐系统的设计与实现 Django 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·python·django·毕业设计·课程设计·毕业论文