吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

知识点笔记

Chat vs. base models

python 复制代码
### chat model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 model="togethercomputer/llama-2-7b-chat")


### base model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 add_inst=False,
                 model="togethercomputer/llama-2-7b")

chat model 传送过去的prompt有[inst] [/inst]标记,而base model在设置add_inst=False之后没有标记。

但是具体呢?

原来chat model只返回一个回答,而base model在有[inst]标记的情况下返回所有相同的回答,在没有[inst]标记时返回相似问题。

shot Prompting 样本提示分类

Zero-shot Prompting 、One-shot Prompting 和Few-shot Prompting

零样本提示、单样本提示和多样本提示,顾名思义,零样本提示,就是prompt里面没有样例,直接提问问题,单样本提示就是给出一个例子,多样本提示就是给出几个例子。大模型最厉害的地方就是即使 多样本提示,一般也只需要区区几个例子,而不想传统的CV、NLP模型,需要几十甚至几百个样例才能达到较好的效果。

零样本提示

python 复制代码
prompt = """
Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

多样本提示

python 复制代码
prompt = """
Message: Hi Dad, you're 20 minutes late to my piano recital!
Sentiment: Negative

Message: Can't wait to order pizza for dinner tonight
Sentiment: Positive

Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

角色提示

角色为LLM提供了所需答案类型的上下文。

当提供角色时,Llama 2通常会给出更一致的回答。

普通写法

python 复制代码
prompt = """
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)

有角色提示写法

python 复制代码
role = """
Your role is a life coach \
who gives advice to people about living a good life.\
You attempt to provide unbiased advice.
You respond in the tone of an English pirate.
"""

prompt = f"""
{role}
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)
相关推荐
oil欧哟5 分钟前
文心 5.0 来了,百度大模型的破局之战
前端·人工智能·百度·prompt
玩转AGI5 分钟前
一文看懂 Agentic AI:搭建单体 vs 多智能体系统,结果出乎意料!
人工智能
ai大模型分享员5 分钟前
项目实战:基于RAPTOR RAG检索技术的工业设备故障诊断系统
人工智能
d111111111d23 分钟前
STM32外设学习--DMA直接存储器读取(AD扫描程序,DMA搬运)--学习笔记。
笔记·stm32·单片机·嵌入式硬件·学习
MUTA️27 分钟前
什么是RKNN?
人工智能
倚栏听风雨33 分钟前
2、Gemini里 交互模式和非交互模式区别
人工智能
illuspas1 小时前
MI50运算卡使用llama.cpp的ROCm后端运行Qwen3-Coder-30B-A3B的速度测试
人工智能·llama
herogus丶1 小时前
【LLM】LLaMA-Factory 训练模型入门指南
python·ai编程·llama
illuspas1 小时前
MI50运算卡使用llama.cpp的ROCm后端运行gpt-oss-20b的速度测试
人工智能·gpt·llama
谏书稀1 小时前
LLaMA Factory微调大模型
python·transformer·llama