吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

知识点笔记

Chat vs. base models

python 复制代码
### chat model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 model="togethercomputer/llama-2-7b-chat")


### base model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 add_inst=False,
                 model="togethercomputer/llama-2-7b")

chat model 传送过去的prompt有[inst] [/inst]标记,而base model在设置add_inst=False之后没有标记。

但是具体呢?

原来chat model只返回一个回答,而base model在有[inst]标记的情况下返回所有相同的回答,在没有[inst]标记时返回相似问题。

shot Prompting 样本提示分类

Zero-shot Prompting 、One-shot Prompting 和Few-shot Prompting

零样本提示、单样本提示和多样本提示,顾名思义,零样本提示,就是prompt里面没有样例,直接提问问题,单样本提示就是给出一个例子,多样本提示就是给出几个例子。大模型最厉害的地方就是即使 多样本提示,一般也只需要区区几个例子,而不想传统的CV、NLP模型,需要几十甚至几百个样例才能达到较好的效果。

零样本提示

python 复制代码
prompt = """
Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

多样本提示

python 复制代码
prompt = """
Message: Hi Dad, you're 20 minutes late to my piano recital!
Sentiment: Negative

Message: Can't wait to order pizza for dinner tonight
Sentiment: Positive

Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

角色提示

角色为LLM提供了所需答案类型的上下文。

当提供角色时,Llama 2通常会给出更一致的回答。

普通写法

python 复制代码
prompt = """
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)

有角色提示写法

python 复制代码
role = """
Your role is a life coach \
who gives advice to people about living a good life.\
You attempt to provide unbiased advice.
You respond in the tone of an English pirate.
"""

prompt = f"""
{role}
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)
相关推荐
DevinLGT14 分钟前
6Pin Type-C Pin脚定义:【图文讲解】
人工智能·单片机·嵌入式硬件
宋一诺3318 分钟前
机器学习—高级优化方法
人工智能·机器学习
龙的爹233331 分钟前
论文 | The Capacity for Moral Self-Correction in LargeLanguage Models
人工智能·深度学习·机器学习·语言模型·自然语言处理·prompt
Mr.简锋34 分钟前
opencv视频读写
人工智能·opencv·音视频
Baihai_IDP34 分钟前
「混合专家模型」可视化指南:A Visual Guide to MoE
人工智能·llm·aigc
寰宇视讯1 小时前
“津彩嘉年,洽通天下” 2024中国天津投资贸易洽谈会火热启动 首届津彩生活嘉年华重磅来袭!
大数据·人工智能·生活
Light601 小时前
低代码牵手 AI 接口:开启智能化开发新征程
人工智能·python·深度学习·低代码·链表·线性回归
墨绿色的摆渡人1 小时前
用 Python 从零开始创建神经网络(六):优化(Optimization)介绍
人工智能·python·深度学习·神经网络
春末的南方城市2 小时前
开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序
人工智能·计算机视觉·aigc·音视频
金星娃儿2 小时前
MATLAB基础知识笔记——(矩阵的运算)
笔记·matlab·矩阵