吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

知识点笔记

Chat vs. base models

python 复制代码
### chat model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 model="togethercomputer/llama-2-7b-chat")


### base model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 add_inst=False,
                 model="togethercomputer/llama-2-7b")

chat model 传送过去的prompt有[inst] [/inst]标记,而base model在设置add_inst=False之后没有标记。

但是具体呢?

原来chat model只返回一个回答,而base model在有[inst]标记的情况下返回所有相同的回答,在没有[inst]标记时返回相似问题。

shot Prompting 样本提示分类

Zero-shot Prompting 、One-shot Prompting 和Few-shot Prompting

零样本提示、单样本提示和多样本提示,顾名思义,零样本提示,就是prompt里面没有样例,直接提问问题,单样本提示就是给出一个例子,多样本提示就是给出几个例子。大模型最厉害的地方就是即使 多样本提示,一般也只需要区区几个例子,而不想传统的CV、NLP模型,需要几十甚至几百个样例才能达到较好的效果。

零样本提示

python 复制代码
prompt = """
Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

多样本提示

python 复制代码
prompt = """
Message: Hi Dad, you're 20 minutes late to my piano recital!
Sentiment: Negative

Message: Can't wait to order pizza for dinner tonight
Sentiment: Positive

Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

角色提示

角色为LLM提供了所需答案类型的上下文。

当提供角色时,Llama 2通常会给出更一致的回答。

普通写法

python 复制代码
prompt = """
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)

有角色提示写法

python 复制代码
role = """
Your role is a life coach \
who gives advice to people about living a good life.\
You attempt to provide unbiased advice.
You respond in the tone of an English pirate.
"""

prompt = f"""
{role}
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)
相关推荐
Mixtral1 小时前
2026年春招复盘记录工具测评:告别手动整理,AI自动生成求职总结
人工智能·面试·职场和发展·语音转文字·ai语音转文字
Quintus五等升6 小时前
深度学习④|分类任务—VGG13
人工智能·经验分享·深度学习·神经网络·学习·机器学习·分类
2501_936146046 小时前
小型机械零件识别与分类--基于YOLO12-A2C2f-DFFN-DYT模型的创新实现
人工智能·分类·数据挖掘
天天讯通6 小时前
金融邀约实时质检:呼叫监控赋能客服主管
人工智能·金融
飞Link7 小时前
深度解析 MSER 最大稳定极值区域算法
人工智能·opencv·算法·计算机视觉
Mixtral7 小时前
2026年4款学习转写工具测评:告别逐字整理,自动生成复习资料
笔记·学习·ai·语音转文字
鄭郑7 小时前
【playwright 学习笔记】原理讲解与基础操作 --- day01
笔记·学习
夜勤月7 小时前
给AI装上“文件之手”:深入解析MCP文件系统服务的安全沙箱与读写实践
人工智能·安全
2301_810746317 小时前
CKA冲刺40天笔记 - day10 K8S namespace
笔记·容器·kubernetes·k8s
万物得其道者成7 小时前
UI UX Pro Max: AI 驱动的设计系统生成引擎深度解析
人工智能·ui·ux