吴恩达llama课程笔记:第四课提示词技术

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。作为一款由Meta AI发布的开放且高效的大型基础语言模型,Llama拥有7B、13B和70B(700亿)三种版本,满足不同场景和需求。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

知识点笔记

Chat vs. base models

python 复制代码
### chat model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 model="togethercomputer/llama-2-7b-chat")


### base model
prompt = "What is the capital of France?"
response = llama(prompt, 
                 verbose=True,
                 add_inst=False,
                 model="togethercomputer/llama-2-7b")

chat model 传送过去的prompt有[inst] [/inst]标记,而base model在设置add_inst=False之后没有标记。

但是具体呢?

原来chat model只返回一个回答,而base model在有[inst]标记的情况下返回所有相同的回答,在没有[inst]标记时返回相似问题。

shot Prompting 样本提示分类

Zero-shot Prompting 、One-shot Prompting 和Few-shot Prompting

零样本提示、单样本提示和多样本提示,顾名思义,零样本提示,就是prompt里面没有样例,直接提问问题,单样本提示就是给出一个例子,多样本提示就是给出几个例子。大模型最厉害的地方就是即使 多样本提示,一般也只需要区区几个例子,而不想传统的CV、NLP模型,需要几十甚至几百个样例才能达到较好的效果。

零样本提示

python 复制代码
prompt = """
Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

多样本提示

python 复制代码
prompt = """
Message: Hi Dad, you're 20 minutes late to my piano recital!
Sentiment: Negative

Message: Can't wait to order pizza for dinner tonight
Sentiment: Positive

Message: Hi Amit, thanks for the thoughtful birthday card!
Sentiment: ?
"""
response = llama(prompt)
print(response)

角色提示

角色为LLM提供了所需答案类型的上下文。

当提供角色时,Llama 2通常会给出更一致的回答。

普通写法

python 复制代码
prompt = """
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)

有角色提示写法

python 复制代码
role = """
Your role is a life coach \
who gives advice to people about living a good life.\
You attempt to provide unbiased advice.
You respond in the tone of an English pirate.
"""

prompt = f"""
{role}
How can I answer this question from my friend:
What is the meaning of life?
"""
response = llama(prompt)
print(response)
相关推荐
深圳市九鼎创展科技7 分钟前
瑞芯微 RK3399 开发板 X3399 评测:高性能 ARM 平台的多面手
linux·arm开发·人工智能·单片机·嵌入式硬件·边缘计算
HELLO程序员12 分钟前
Claude Code 2.1 发布:2026 年 AI 智能体开发的范式革命
人工智能
智者知已应修善业15 分钟前
【洛谷P9975奶牛被病毒传染最少数量推导,导出多样例】2025-2-26
c语言·c++·经验分享·笔记·算法·推荐算法
猿小羽16 分钟前
AIGC 应用工程师(3-5 年)面试题精讲:从基础到实战的系统备战清单
面试·大模型·aigc·agent·rag
DFCED16 分钟前
OpenClaw部署实战:5分钟搭建你的专属AI数字员工(附避坑指南)
人工智能·大模型·agent·openclaw
Java新手村17 分钟前
基于 Vue 3 + Spring Boot 3 的 AI 面试辅助系统:实时语音识别 + 大模型智能回答
vue.js·人工智能·spring boot
Junlan2726 分钟前
Cursor使用入门及连接服务器方法(更新中)
服务器·人工智能·笔记
robot_learner30 分钟前
OpenClaw, 突然走红的智能体
人工智能
ujainu小31 分钟前
CANN仓库内容深度解读:昇腾AI生态的基石与AIGC发展的引擎
人工智能·aigc
rcc862832 分钟前
AI应用核心技能:从入门到精通的实战指南
人工智能·机器学习