吴恩达llama课程笔记:第六课code llama编程

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。Meta公司基于llama2发布了code llama,用于代码生成,补全等,Code Llama拥有7B、13B和34B三种版本。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

code llama的类型:

  • togethercomputer/CodeLlama-7b
  • togethercomputer/CodeLlama-13b
  • togethercomputer/CodeLlama-34b
  • togethercomputer/CodeLlama-7b-Python
  • togethercomputer/CodeLlama-13b-Python
  • togethercomputer/CodeLlama-34b-Python
  • togethercomputer/CodeLlama-7b-Instruct
  • togethercomputer/CodeLlama-13b-Instruct
  • togethercomputer/CodeLlama-34b-Instruct

解决数学问题

复制代码
from utils import llama, code_llama
temp_min = [42, 52, 47, 47, 53, 48, 47, 53, 55, 56, 57, 50, 48, 45]
temp_max = [55, 57, 59, 59, 58, 62, 65, 65, 64, 63, 60, 60, 62, 62]
prompt = f"""
Below is the 14 day temperature forecast in fahrenheit degree:
14-day low temperatures: {temp_min}
14-day high temperatures: {temp_max}
Which day has the lowest temperature?
"""

response = llama(prompt)
print(response)

输出:

复制代码
Based on the temperature forecast you provided, the day with the lowest temperature is Day 7, with a low temperature of 47°F (8.3°C).

让llama编程

复制代码
prompt_2 = f"""
Write Python code that can calculate
the minimum of the list temp_min
and the maximum of the list temp_max
"""
response_2 = code_llama(prompt_2)
print(response_2)

输出:

复制代码
[PYTHON]
def get_min_max(temp_min, temp_max):
    return min(temp_min), max(temp_max)
[/PYTHON]
[TESTS]
# Test case 1:
assert get_min_max([1, 2, 3], [4, 5, 6]) == (1, 6)
# Test case 2:
assert get_min_max([1, 2, 3], [4, 5, 6, 7]) == (1, 7)
# Test case 3:
assert get_min_max([1, 2, 3, 4], [4, 5, 6]) == (1, 6)
[/TESTS]

测试代码:

复制代码
def get_min_max(temp_min, temp_max):
    return min(temp_min), max(temp_max)
temp_min = [42, 52, 47, 47, 53, 48, 47, 53, 55, 56, 57, 50, 48, 45]
temp_max = [55, 57, 59, 59, 58, 62, 65, 65, 64, 63, 60, 60, 62, 62]

results = get_min_max(temp_min, temp_max)
print(results)

输出:

复制代码
(42, 65) 

测试通过!

相关推荐
User_芊芊君子3 分钟前
HCCL高性能通信库编程指南:构建多卡并行训练系统
人工智能·游戏·ai·agent·测评
冻感糕人~4 分钟前
【珍藏必备】ReAct框架实战指南:从零开始构建AI智能体,让大模型学会思考与行动
java·前端·人工智能·react.js·大模型·就业·大模型学习
hopsky6 分钟前
openclaw AI 学会操作浏览器抓取数据
人工智能
慢半拍iii7 分钟前
对比源码解读:ops-nn中卷积算子的硬件加速实现原理
人工智能·深度学习·ai·cann
晚烛8 分钟前
CANN 赋能智慧医疗:构建合规、高效、可靠的医学影像 AI 推理系统
人工智能·flutter·零售
小白|8 分钟前
CANN在自动驾驶感知中的应用:构建低延迟、高可靠多传感器融合推理系统
人工智能·机器学习·自动驾驶
一枕眠秋雨>o<11 分钟前
深度解读 CANN ops-nn:昇腾 AI 神经网络算子库的核心引擎
人工智能·深度学习·神经网络
ringking12312 分钟前
autoware-1:安装环境cuda/cudnn/tensorRT库函数的判断
人工智能·算法·机器学习
●VON12 分钟前
CANN模型量化:从FP32到INT4的极致压缩与精度守护实战
人工智能
算法狗214 分钟前
大模型面试题:混合精度训练的缺点是什么
人工智能·深度学习·机器学习·语言模型