吴恩达llama课程笔记:第六课code llama编程

羊驼Llama是当前最流行的开源大模型,其卓越的性能和广泛的应用领域使其成为业界瞩目的焦点。Meta公司基于llama2发布了code llama,用于代码生成,补全等,Code Llama拥有7B、13B和34B三种版本。

吴恩达教授推出了全新的Llama课程,旨在帮助学习者全面理解并掌握Llama大模型这一前沿技术。

课程地址:DLAI - Prompt Engineering with Llama 2

code llama的类型:

  • togethercomputer/CodeLlama-7b
  • togethercomputer/CodeLlama-13b
  • togethercomputer/CodeLlama-34b
  • togethercomputer/CodeLlama-7b-Python
  • togethercomputer/CodeLlama-13b-Python
  • togethercomputer/CodeLlama-34b-Python
  • togethercomputer/CodeLlama-7b-Instruct
  • togethercomputer/CodeLlama-13b-Instruct
  • togethercomputer/CodeLlama-34b-Instruct

解决数学问题

复制代码
from utils import llama, code_llama
temp_min = [42, 52, 47, 47, 53, 48, 47, 53, 55, 56, 57, 50, 48, 45]
temp_max = [55, 57, 59, 59, 58, 62, 65, 65, 64, 63, 60, 60, 62, 62]
prompt = f"""
Below is the 14 day temperature forecast in fahrenheit degree:
14-day low temperatures: {temp_min}
14-day high temperatures: {temp_max}
Which day has the lowest temperature?
"""

response = llama(prompt)
print(response)

输出:

复制代码
Based on the temperature forecast you provided, the day with the lowest temperature is Day 7, with a low temperature of 47°F (8.3°C).

让llama编程

复制代码
prompt_2 = f"""
Write Python code that can calculate
the minimum of the list temp_min
and the maximum of the list temp_max
"""
response_2 = code_llama(prompt_2)
print(response_2)

输出:

复制代码
[PYTHON]
def get_min_max(temp_min, temp_max):
    return min(temp_min), max(temp_max)
[/PYTHON]
[TESTS]
# Test case 1:
assert get_min_max([1, 2, 3], [4, 5, 6]) == (1, 6)
# Test case 2:
assert get_min_max([1, 2, 3], [4, 5, 6, 7]) == (1, 7)
# Test case 3:
assert get_min_max([1, 2, 3, 4], [4, 5, 6]) == (1, 6)
[/TESTS]

测试代码:

复制代码
def get_min_max(temp_min, temp_max):
    return min(temp_min), max(temp_max)
temp_min = [42, 52, 47, 47, 53, 48, 47, 53, 55, 56, 57, 50, 48, 45]
temp_max = [55, 57, 59, 59, 58, 62, 65, 65, 64, 63, 60, 60, 62, 62]

results = get_min_max(temp_min, temp_max)
print(results)

输出:

复制代码
(42, 65) 

测试通过!

相关推荐
SmartBrain1 小时前
DeerFlow 实践:华为IPD流程的评审智能体设计
人工智能·语言模型·架构
l1t2 小时前
利用DeepSeek实现服务器客户端模式的DuckDB原型
服务器·c语言·数据库·人工智能·postgresql·协议·duckdb
寒月霜华3 小时前
机器学习-数据标注
人工智能·机器学习
九章云极AladdinEdu4 小时前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
Hello_Embed4 小时前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中5 小时前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
人工智能训练师5 小时前
Ubuntu22.04如何安装新版本的Node.js和npm
linux·运维·前端·人工智能·ubuntu·npm·node.js
Grassto5 小时前
RAG 从入门到放弃?丐版 demo 实战笔记(go+python)
笔记
Magnetic_h6 小时前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa
cxr8286 小时前
SPARC方法论在Claude Code基于规则驱动开发中的应用
人工智能·驱动开发·claude·智能体