OpenCV基本图像处理操作(三)——图像轮廓

轮廓

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv_show(img,'img')
python 复制代码
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')
面积、周长参数
python 复制代码
cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)
模拟绘制轮廓
python 复制代码
img = cv2.imread('contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

33

轮廓近似
python 复制代码
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')
边界矩形
python 复制代码
img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)
外接圆
python 复制代码
(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')
相关推荐
飞哥数智坊5 分钟前
五一必备:手把手教你“即梦”APP轻松生成精美海报
人工智能
数据与后端架构提升之路20 分钟前
深度解析如何将图像帧和音频片段特征高效存储到向量数据库 Milvus
数据库·opencv·音视频
OpenLoong 开源社区28 分钟前
技术视界 | 从自然中获取智慧: 仿生机器人如何学会“像动物一样思考和行动”
人工智能
HHONGQI12343 分钟前
嵌入式人工智能应用-第三章 opencv操作8 图像特征之 Haar 特征
人工智能·opencv·计算机视觉
猿饵块1 小时前
opencv--图像滤波
图像处理·opencv·计算机视觉
Ai多利1 小时前
顶会招牌idea:机器学习+组合优化 优秀论文合集
人工智能·机器学习·组合优化
jerwey1 小时前
Stable Diffusion:Diffusion Model
人工智能·stable diffusion
尼罗河女娲1 小时前
深度剖析RLHF:语言模型“类人输出”的训练核心机制
人工智能·深度学习·语言模型
吴佳浩1 小时前
Python入门指南(四)-项目初始化
人工智能·后端·python