OpenCV基本图像处理操作(三)——图像轮廓

轮廓

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()
img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv_show(img,'img')
python 复制代码
#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')
面积、周长参数
python 复制代码
cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)
模拟绘制轮廓
python 复制代码
img = cv2.imread('contours2.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

33

轮廓近似
python 复制代码
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)

draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')
边界矩形
python 复制代码
img = cv2.imread('contours.png')

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]

x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)
外接圆
python 复制代码
(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')
相关推荐
SailingCoder几秒前
AI 流式对话该怎么做?SSE、fetch、axios 一次讲清楚
前端·javascript·人工智能·ai·node.js
腾视科技2 分钟前
超低功耗 性能卓越|腾视科技重磅推出TS-SG-SM9系列AI算力模组,引领边缘智能计算新篇章
人工智能·科技
视界先声3 分钟前
洁诚新能源:践行双碳战略的绿色行动派
大数据·人工智能·物联网
gorgeous(๑>؂<๑)3 分钟前
【南京大学-李文斌-arXiv25】超高分辨率遥感多模态大语言模型基准测试
人工智能·语言模型·自然语言处理
低调小一3 分钟前
Google A2UI 协议深度解析:AI 生成 UI 的机遇与实践(客户端视角,Android/iOS 都能落地)
android·人工智能·ui
AI白艿4 分钟前
男装市场稳健增长?AI助力精准把握消费新趋势
人工智能·aigc
5G全域通4 分钟前
工信部2026年短信业务合规申请全流程官方指南(1月1日强制生效)
大数据·网络·人工智能·信息与通信·时序数据库
木卫四科技4 分钟前
【CES 2026】木卫四科技携“合规全生命周期”汽车网络安全方案亮相 CES 2026
人工智能·木卫四科技·ces2026·智能汽车安全
爱思德学术6 分钟前
中国计算机学会(CCF)推荐学术会议-B(交叉/综合/新兴):CogSci 2026
人工智能·神经网络·认知科学
好奇龙猫7 分钟前
【人工智能学习-AI-MIT公开课第 16 讲:支持向量机(SVM)】
人工智能·学习·支持向量机