【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡(偏爱Saga)->解决方案

【项目亮点】大厂中分布式事务的最佳实践 问题产生->难点与权衡->解决方案->底层实现->应用案例

不断有同学问我大厂中实践分布式事务的问题,这里从分布式事务的产生 ,到强弱一致性与性能的权衡 ,再到最终落地的解决方案 ,再到实际的代码实现 ,再到我工作中实际使用SAGA模式的应用案例,一篇文章讲清楚.

问题的产生

83.7%分布式事务的产生都是因为拆分微服务导致的:

java 复制代码
过去:
曾经在单体服务的时代,所有的数据库操作都是单体服务和mysql集群直接交互
比如电商中的下单操作,先更新订单,再扣减库存
订单和库存都在同一个数据库中,可以使用本地事务保证ACID特性

现状:
现在该服务拆分成了一大堆微服务,其中订单服务和库存服务成了两个服务
那么更新订单和扣减库存就成了两个RPC,数据也属于不同的数据库
这时候,如果更新订单成功了,扣减库存失败了(网络问题或者库存不足)
就会出现一致性问题

目标
分布式事务的目标就是让保证订单和库存数据的一致性

至于是
	(回滚/补偿 还是重试)
	(TCC型(又分为本地和远端,一般说的SEATA那种都是远端实现)  
	SAGA型  
	最大努力通知型  
	可靠消息型)
我们一会儿再说

一句话概括,分布式事务就是RPC和MQ没法像本地事务那样保证ACID的特性,为了(尽可能,最多保证几个9不可能完全)保证数据库操作,RPC,MQ三者混合使用时的原子性与一致性,而引入的解决方案.

难点与权衡 && 为什么大厂更偏爱Saga分布式事务?

分布式事务的权衡本质上是对性能和一致性的权衡.

熟悉CAP理论的小伙伴都知道,P(分区容错性)是一定要保证的,而C(一致性)和A(高可用)就要做一个权衡了. 而在互联网的业务中,对性能的要求是很高的,不可能为了保证强一致性而导致系统性能出问题.
所以分布式事务中强一致性的方案实际应用的很少. 我们常常在保证高性能的同时 ,保证最终一致性.

我待过的团队都更倾向于使用SAGA模式来解决分布式事务问题.原因如下:

java 复制代码
强一致性方案,对性能损耗严重 直接pass(比如2PC,3PC等)
最大努力通知型,一致性太差,连最终一致性都无法保证 直接pass

最终一致性方案 主流的有SAGA和TCC模式

TCC模式,对代码侵入性太大了,需要把流程改造成try->confirm->cancel
的形式,try锁定的资源只有事务完成或者超时才会释放. 
而且部分框架TCC的实现需要依赖TM(事务管理)集群,TM集群也是潜在的性能瓶颈的风险.

所以我们更倾向于使用Saga模式来实现分布式事务
Saga模式引入了全局事务和分支事务的概念,每个分支事务除了业务逻辑还有补偿逻辑
如果调用链路 A->B->C->D ,比如执行到C的时候抛了异常,则从C开始逆向执行补偿逻辑
补偿例子: A->B->C(执行抛出异常)->C补偿->B补偿->A补偿
重试例子: A->B->C(执行抛出异常)->D  执行完了,C会一直重试,直到C执行成功或者大于配置的阈值时停止


当然除了补偿,还可以用配置重试保障一致性
一般来说,我们像更新单据这种操作更倾向于重试
而像扣减库存这种操作更倾向于补偿 (因为扣减库存失败绝大多数是因为库存不足,重试没有意义)

这里多提一嘴,很多分布式事务解决方案比如TCC或者SAGA都有两种实现方式 :1.引入TM事务协调器来管理协调事务 2.本地建表分布式方式来管理协调事务 个人建议接入的时候最好选择方式2分布式的方式 ,最好不要依赖TM(事务管理)集群,TM集群也是潜在的性能瓶颈的风险

解决方案

本地事务信息表+定时任务 实现

核心思想: 用本地事务表 驱动 MQ(本地事务能保证一致性与原子性)

java 复制代码
我们知道,之所以会有不一致问题,说白了就是因为MQ和RPC
也就是说如果全部操作都是本地事务,那就能保证ACID,当然也包括一致性与原子性
那把MQ/RPC转成本地事务不就行了?
或者说: 用本地事务表 驱动 MQ/RPC
当然,这种思想好,但实际实现会有严重的性能问题(反射)


那么,我们退而求其次,使用消息队列中间件来让各个分支事务通信(具体见上图),
当各个本地事务之间要通信感知彼此执行成功还是失败时,
这个通信的消息,可以用本地事务表来驱动,
来保证了消息和业务逻辑的一致性.
相关推荐
MonkeyKing_sunyuhua12 分钟前
5.6 Microsoft Semantic Kernel:专注于将LLM集成到现有应用中的框架
人工智能·microsoft·agent
躺不平的理查德1 小时前
General Spark Operations(Spark 基础操作)
大数据·分布式·spark
talle20211 小时前
Zeppelin在spark环境导出dataframe
大数据·分布式·spark
渣渣盟1 小时前
大数据开发环境的安装,配置(Hadoop)
大数据·hadoop·分布式
Angindem2 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务
每次的天空2 小时前
kotlin与MVVM结合使用总结(三)
开发语言·microsoft·kotlin
龙仔72510 小时前
离线安装rabbitmq全流程
分布式·rabbitmq·ruby
〆、风神13 小时前
Spring Boot 整合 Lock4j + Redisson 实现分布式锁实战
spring boot·分布式·后端
胡萝卜糊了Ohh14 小时前
kafka
分布式·kafka