HDFS第一篇简介

HDFS简介

    • [1. HDFS概述](#1. HDFS概述)
    • [2. HDFS应用场景](#2. HDFS应用场景)
      • [2.1 适合的应用场景](#2.1 适合的应用场景)
      • [2.2 不适合的应用场景](#2.2 不适合的应用场景)
    • [3. HDFS 的架构](#3. HDFS 的架构)
    • 4:NameNode和DataNode
      • [4.1 NameNode作用](#4.1 NameNode作用)
      • [4.2 DataNode作用](#4.2 DataNode作用)
    • 5:HDFS的副本机制和机架感知
      • [5.1 HDFS 文件副本机制](#5.1 HDFS 文件副本机制)
      • [5.2 机架感知](#5.2 机架感知)

1. HDFS概述

在现代的企业环境中,单机容量往往无法存储大量数据,需要跨机器存储。统一管理分布在集群上的文件系统称为分布式文件系统

HDFS(Hadoop Distributed File System)是 Apache Hadoop 项目的一个子项目. Hadoop 非常适于存储大型数据 (比如 TB 和 PB), 其就是使用 HDFS 作为存储系统. HDFS 使用多台计算机存储文件, 并且提供统一的访问接口, 像是访问一个普通文件系统一样使用分布式文件系统.

2. HDFS应用场景

2.1 适合的应用场景

  • 存储非常大的文件:这里非常大指的是几百M、G、或者TB级别,需要高吞吐量,对延时没有要求
  • 采用流式的数据访问方式: 即一次写入、多次读取,数据集经常从数据源生成或者拷贝一次,然后在其上做很多分析工作 。
  • 运行于商业硬件上: Hadoop不需要特别贵的机器,可运行于普通廉价机器,可以处节约成本
  • 需要高容错性

2.2 不适合的应用场景

1) 低延时的数据访问

对延时要求在毫秒级别的应用,不适合采用HDFS。HDFS是为高吞吐数据传输设计的,因此可能牺牲延时

2)大量小文件

文件的元数据保存在NameNode的内存中, 整个文件系统的文件数量会受限于NameNode的内存大小。

经验而言,一个文件/目录/文件块一般占有150字节的元数据内存空间。如果有100万个文件,每个文件占用1个文件块,则需要大约300M的内存。因此十亿级别的文件数量在现有商用机器上难以支持。

3)多方读写,需要任意的文件修改

HDFS采用追加(append-only)的方式写入数据。不支持文件任意offset的修改。不支持多个写入器(writer)

3. HDFS 的架构

HDFS是一个主/从(Mater/Slave)体系结构

HDFS由四部分组成,HDFS ClientNameNodeDataNodeSecondary NameNode

1、Client:就是客户端

  • 文件切分。文件上传 HDFS 的时候,Client 将文件切分成 一个一个的Block,然后进行存储。
  • 与 NameNode 交互,获取文件的位置信息。
  • 与 DataNode 交互,读取或者写入数据。
  • Client 提供一些命令来管理 和访问HDFS,比如启动或者关闭HDFS。

2、NameNode:就是 master,它是一个主管、管理者。

  • 管理 HDFS 的名称空间
  • 管理数据块(Block)映射信息
  • 配置副本策略
  • 处理客户端读写请求。

3、DataNode:就是Slave。NameNode 下达命令,DataNode 执行实际的操作。

  • 存储实际的数据块。
  • 执行数据块的读/写操作。

4、Secondary NameNode:并非 NameNode 的热备。当NameNode 挂掉的时候,它并不能马上替换 NameNode 并提供服务。

  • 辅助 NameNode,分担其工作量。
  • 定期合并 fsimage和fsedits,并推送给NameNode。
  • 在紧急情况下,可辅助恢复 NameNode。

4:NameNode和DataNode

4.1 NameNode作用

1、NameNode元数据信息

文件名,文件目录结构,文件属性(生成时间,副本数,权限)每个文件的块列表。

以及列表中的块与块所在的DataNode之间的地址映射关系

在内存中加载文件系统中每个文件和每个数据块的引用关系(文件、block、datanode之间的映射信息)

数据会定期保存到本地磁盘(fsImage镜像文件和edits日志文件)

2、NameNode文件操作

NameNode负责文件元数据的操作

DataNode负责处理文件内容的读写请求,数据流不经过NameNode,会询问它跟那个DataNode联系

3、NameNode副本

文件数据块到底存放到哪些DataNode上,是由NameNode决定的,NN根据全局情况做出放置副本的决定

4、NameNode心跳机制

全权管理数据块的复制,周期性的接受心跳和块的状态报告信息(包含该DataNode上所有数据块的列表)

若接受到心跳信息,NameNode认为DataNode工作正常,如果在10分钟后还接受到不到DN的心跳,那么NameNode认为DataNode已经宕机 ,这时候NN准备要把DN上的数据块进行重新的复制。 块的状态报告包含了一个DN上所有数据块的列表,blocks report 每个1小时发送一次.

4.2 DataNode作用

提供真实文件数据的存储服务。

1、Data Node以数据块的形式存储HDFS文件

2、Data Node 响应HDFS 客户端读写请求

3、Data Node 周期性向NameNode汇报心跳信息

4、Data Node 周期性向NameNode汇报数据块信息

5、Data Node 周期性向NameNode汇报缓存数据块信息

5:HDFS的副本机制和机架感知

5.1 HDFS 文件副本机制

所有的文件都是以 block 块的方式存放在 HDFS 文件系统当中,作用如下

  1. 一个文件有可能大于集群中任意一个磁盘,引入块机制,可以很好的解决这个问题
  2. 使用块作为文件存储的逻辑单位可以简化存储子系统
  3. 块非常适合用于数据备份进而提供数据容错能力

在 Hadoop1 当中, 文件的 block 块默认大小是 64M, hadoop2 当中, 文件的 block 块大小默认是 128M, block 块的大小可以通过 hdfs-site.xml 当中的配置文件进行指定

xml 复制代码
<property>
    <name>dfs.block.size</name>
    <value>块大小 以字节为单位</value>
</property>

5.2 机架感知

HDFS分布式文件系统的内部有一个副本存放策略:以默认的副本数=3为例:

1、第一个副本块存本机

2、第二个副本块存跟本机同机架内的其他服务器节点

3、第三个副本块存不同机架的一个服务器节点上

相关推荐
望获linux1 小时前
【实时Linux实战系列】FPGA 与实时 Linux 的协同设计
大数据·linux·服务器·网络·数据库·fpga开发·操作系统
励志成为糕手1 小时前
宽依赖的代价:Spark 与 MapReduce Shuffle 的数据重分布对比
大数据·spark·mapreduce·分布式计算·sortshuffle
Elastic 中国社区官方博客6 小时前
根据用户行为数据中的判断列表在 Elasticsearch 中训练 LTR 模型
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
点控云7 小时前
点控云智能短信:重构企业与用户的连接,让品牌沟通更高效
大数据·人工智能·科技·重构·外呼系统·呼叫中心
风清再凯8 小时前
04_es原理&filebeat使用
大数据·elasticsearch·搜索引擎
小小王app小程序开发9 小时前
盲盒小程序开发新视角:从用户体验到运营落地的分析拆解
大数据·ux
weixin_5259363311 小时前
部分Spark SQL编程要点
大数据·python·sql·spark
wan5555cn12 小时前
当代社会情绪分类及其改善方向深度解析
大数据·人工智能·笔记·深度学习·算法·生活
chad__chang12 小时前
dolphinscheduler安装过程
hive·hadoop
板凳坐着晒太阳13 小时前
Flink 作业通用优化方案
大数据·flink