时间步长问题。tensorflow训练lstm时序模型,输出层实际输出维度和期待维度不一致

设置输出维度为1.

Dense(1)

但结果跑出来的输出维度每次都是三维的。

模型设置:

输入x维度(2250,48,2)

输入y 维度(2250,) 和 (2250,1)

但模型预测出的结果维度都是(2250,48,1)

我就很纳闷= = !

后来对比了以前跑过的文件。发现LSTM少定义一个参数。

input_shape填两个参数值,第一个值代表指定的时间步长。此处为48.

第二个值是特征数目。

更改后训练成功。模型预测值维度为(2250,1)

问题解决~

相关推荐
CSDN云计算5 分钟前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森15 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing112317 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子22 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing34 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
学习前端的小z2 小时前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc