时间步长问题。tensorflow训练lstm时序模型,输出层实际输出维度和期待维度不一致

设置输出维度为1.

Dense(1)

但结果跑出来的输出维度每次都是三维的。

模型设置:

输入x维度(2250,48,2)

输入y 维度(2250,) 和 (2250,1)

但模型预测出的结果维度都是(2250,48,1)

我就很纳闷= = !

后来对比了以前跑过的文件。发现LSTM少定义一个参数。

input_shape填两个参数值,第一个值代表指定的时间步长。此处为48.

第二个值是特征数目。

更改后训练成功。模型预测值维度为(2250,1)

问题解决~

相关推荐
一 铭34 分钟前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力4 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心4 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield5 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域6 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技6 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_16 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
书玮嘎7 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
猫头虎7 小时前
猫头虎 AI工具分享:一个网页抓取、结构化数据提取、网页爬取、浏览器自动化操作工具:Hyperbrowser MCP
运维·人工智能·gpt·开源·自动化·文心一言·ai编程
要努力啊啊啊7 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪