时间步长问题。tensorflow训练lstm时序模型,输出层实际输出维度和期待维度不一致

设置输出维度为1.

Dense(1)

但结果跑出来的输出维度每次都是三维的。

模型设置:

输入x维度(2250,48,2)

输入y 维度(2250,) 和 (2250,1)

但模型预测出的结果维度都是(2250,48,1)

我就很纳闷= = !

后来对比了以前跑过的文件。发现LSTM少定义一个参数。

input_shape填两个参数值,第一个值代表指定的时间步长。此处为48.

第二个值是特征数目。

更改后训练成功。模型预测值维度为(2250,1)

问题解决~

相关推荐
大熊背8 分钟前
图像处理专业书籍以及网络资源总结
人工智能·算法·microsoft
江理不变情14 分钟前
图像质量对比感悟
c++·人工智能
张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
一 铭3 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
麻雀无能为力7 小时前
CAU数据挖掘实验 表分析数据插件
人工智能·数据挖掘·中国农业大学
时序之心7 小时前
时空数据挖掘五大革新方向详解篇!
人工智能·数据挖掘·论文·时间序列
.30-06Springfield7 小时前
人工智能概念之七:集成学习思想(Bagging、Boosting、Stacking)
人工智能·算法·机器学习·集成学习
说私域8 小时前
基于开源AI智能名片链动2+1模式S2B2C商城小程序的超级文化符号构建路径研究
人工智能·小程序·开源
永洪科技8 小时前
永洪科技荣获商业智能品牌影响力奖,全力打造”AI+决策”引擎
大数据·人工智能·科技·数据分析·数据可视化·bi
shangyingying_18 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉