时间步长问题。tensorflow训练lstm时序模型,输出层实际输出维度和期待维度不一致

设置输出维度为1.

Dense(1)

但结果跑出来的输出维度每次都是三维的。

模型设置:

输入x维度(2250,48,2)

输入y 维度(2250,) 和 (2250,1)

但模型预测出的结果维度都是(2250,48,1)

我就很纳闷= = !

后来对比了以前跑过的文件。发现LSTM少定义一个参数。

input_shape填两个参数值,第一个值代表指定的时间步长。此处为48.

第二个值是特征数目。

更改后训练成功。模型预测值维度为(2250,1)

问题解决~

相关推荐
carver w8 分钟前
one-hot编码
人工智能
邮一朵向日葵32 分钟前
企查查开放平台MCP:为AI智能体注入精准商业数据,驱动智能决策新时代
大数据·人工智能
沃达德软件35 分钟前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
说私域1 小时前
链动2+1模式AI智能名片S2B2C商城小程序中电商直播的应用机制与价值创新研究
人工智能·小程序
北邮刘老师1 小时前
【智能体互联协议解析】身份码-智能体的身份证号
网络·人工智能·大模型·智能体·智能体互联网
Wulida0099911 小时前
【目标检测】基于改进YOLOv13-C3k2-DWR的铲斗定位系统研究
人工智能·yolo·目标检测
Das11 小时前
【计算机视觉】03_重采样
图像处理·人工智能·计算机视觉
湘-枫叶情缘1 小时前
“智律提效”AI数字化运营落地项目可行性方案
大数据·人工智能·产品运营
却道天凉_好个秋1 小时前
OpenCV(四十二):图像分割原理
人工智能·opencv·计算机视觉·图像分割
Coding茶水间1 小时前
基于深度学习的水下海洋生物检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉