理论学习:感受野

参考链接:

安全验证 - 知乎

一、感受野的概念

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

二、举例说明

(1)若输入图像的尺寸大小是5*5,经过两次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为5*5,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为3*3,第二次卷积后的图像大小为1*1)

(2)若输入图像的尺寸大小是7*7,经过三次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为7*7,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为5*5,第二次卷积后的图像大小为3*3,第三次卷积后的图像大小为1*1)

也就是说,随着卷积核的增多(即网络的加深),感受野会越来越大。

相关推荐
大模型玩家七七几秒前
梯度累积真的省显存吗?它换走的是什么成本
java·javascript·数据库·人工智能·深度学习
kkzhang32 分钟前
Concept Bottleneck Models-概念瓶颈模型用于可解释决策:进展、分类体系 与未来方向综述
深度学习
光羽隹衡36 分钟前
计算机视觉——Opencv(图像拼接)
人工智能·opencv·计算机视觉
AI视觉网奇1 小时前
ue 角色驱动衣服 绑定衣服
笔记·学习·ue5
程序员打怪兽2 小时前
详解YOLOv8网络结构
人工智能·深度学习
爱打代码的小林2 小时前
基于 MediaPipe 实现实时面部关键点检测
python·opencv·计算机视觉
wdfk_prog3 小时前
[Linux]学习笔记系列 -- [drivers][input]serio
linux·笔记·学习
深蓝电商API3 小时前
图片验证码识别:pytesseract+opencv入门
人工智能·opencv·计算机视觉·pytesseract
饭饭大王6663 小时前
CANN 生态中的轻量化部署利器:`lite-inference` 项目实战解析
深度学习
MSTcheng.4 小时前
CANN ops-math:AI 硬件端高效数学运算的算子设计与工程化落地方法
人工智能·深度学习·cann