理论学习:感受野

参考链接:

安全验证 - 知乎

一、感受野的概念

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

二、举例说明

(1)若输入图像的尺寸大小是5*5,经过两次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为5*5,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为3*3,第二次卷积后的图像大小为1*1)

(2)若输入图像的尺寸大小是7*7,经过三次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为7*7,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为5*5,第二次卷积后的图像大小为3*3,第三次卷积后的图像大小为1*1)

也就是说,随着卷积核的增多(即网络的加深),感受野会越来越大。

相关推荐
静心问道38 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
亲持红叶41 分钟前
GLU 变种:ReGLU 、 GEGLU 、 SwiGLU
人工智能·深度学习·神经网络·激活函数
绝顶大聪明9 小时前
【深度学习】神经网络-part2
人工智能·深度学习·神经网络
Danceful_YJ10 小时前
16.使用ResNet网络进行Fashion-Mnist分类
人工智能·深度学习·神经网络·resnet
iFulling11 小时前
【计算机网络】第四章:网络层(上)
学习·计算机网络
香蕉可乐荷包蛋11 小时前
AI算法之图像识别与分类
人工智能·学习·算法
xiaoli232711 小时前
课题学习笔记1——文本问答与信息抽取关键技术研究论文阅读(用于无结构化文本问答的文本生成技术)
笔记·学习
人生游戏牛马NPC1号11 小时前
学习 Flutter (四):玩安卓项目实战 - 中
android·学习·flutter
LGGGGGQ13 小时前
嵌入式学习-PyTorch(7)-day23
人工智能·pytorch·学习
甄卷13 小时前
李沐动手学深度学习Pytorch-v2笔记【08线性回归+基础优化算法】2
pytorch·深度学习·算法