理论学习:感受野

参考链接:

安全验证 - 知乎

一、感受野的概念

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

二、举例说明

(1)若输入图像的尺寸大小是5*5,经过两次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为5*5,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为3*3,第二次卷积后的图像大小为1*1)

(2)若输入图像的尺寸大小是7*7,经过三次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为7*7,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为5*5,第二次卷积后的图像大小为3*3,第三次卷积后的图像大小为1*1)

也就是说,随着卷积核的增多(即网络的加深),感受野会越来越大。

相关推荐
余多多_zZ9 分钟前
鸿蒙学习手册(HarmonyOSNext_API16)_应用开发UI设计:Swiper
学习·ui·华为·harmonyos·鸿蒙系统
淬渊阁37 分钟前
汇编学习之《扩展指令指针寄存器》
汇编·学习
lalapanda38 分钟前
UE5学习记录part12
学习·ue5
Json_1 小时前
Vue 构造器 Vue.extend
前端·vue.js·深度学习
并不会1 小时前
多线程案例-单例模式
java·学习·单例模式·单线程·多线程·重要知识
Json_1 小时前
Vue 实例方法
前端·vue.js·深度学习
淬渊阁1 小时前
汇编学习之《push , pop指令》
汇编·学习
mosquito_lover11 小时前
矿山边坡监测预警系统设计
人工智能·python·深度学习·神经网络·视觉检测
船长@Quant1 小时前
PyTorch量化进阶教程:第二章 Transformer 理论详解
pytorch·python·深度学习·transformer·量化交易·sklearn·ta-lib
契合qht53_shine1 小时前
OpenCV 从入门到精通(day_03)
人工智能·opencv·计算机视觉