理论学习:感受野

参考链接:

安全验证 - 知乎

一、感受野的概念

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

二、举例说明

(1)若输入图像的尺寸大小是5*5,经过两次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为5*5,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为3*3,第二次卷积后的图像大小为1*1)

(2)若输入图像的尺寸大小是7*7,经过三次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为7*7,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为5*5,第二次卷积后的图像大小为3*3,第三次卷积后的图像大小为1*1)

也就是说,随着卷积核的增多(即网络的加深),感受野会越来越大。

相关推荐
江河地笑1 小时前
opencv、cmake、vcpkg
人工智能·opencv·计算机视觉
海边夕阳20061 小时前
【每天一个AI小知识】:什么是卷积神经网络?
人工智能·经验分享·深度学习·神经网络·机器学习·cnn
必胜的思想钢印1 小时前
修改主频&睡眠模式&停机模式&待机模式
笔记·stm32·单片机·嵌入式硬件·学习
brave and determined4 小时前
可编程逻辑器件学习(day30):数字电路设计中的流水线技术:原理、实现与优化
学习·fpga开发·verilog·fpga·数字电路·硬件设计·嵌入式设计
Radan小哥5 小时前
Docker学习笔记—day007
笔记·学习·docker
爱跑步的george5 小时前
时间序列预测的“诸神之战”:树模型 (XGB/LGBM) vs 深度学习(Transformer/RNN) 的工业界大对决
深度学习
PyAIGCMaster5 小时前
如何编译一个apk,我是新手
深度学习·学习
张人玉6 小时前
HandyControl使用方法
数据库·计算机视觉·handycontrol
清云逸仙6 小时前
什么是AI领域的Prompt
人工智能·深度学习·机器学习·prompt
立志成为大牛的小牛6 小时前
数据结构——四十四、平衡二叉树的删除操作(王道408)
数据结构·学习·程序人生·考研·算法