理论学习:感受野

参考链接:

安全验证 - 知乎

一、感受野的概念

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

二、举例说明

(1)若输入图像的尺寸大小是5*5,经过两次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为5*5,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为3*3,第二次卷积后的图像大小为1*1)

(2)若输入图像的尺寸大小是7*7,经过三次3*3的卷积核(其中stride=1,padding=0)后,其感受野大小为7*7,如下图所示:

(由卷积计算公式:N=(W-F+2P)/S+1,得到第一次卷积后的图像大小为5*5,第二次卷积后的图像大小为3*3,第三次卷积后的图像大小为1*1)

也就是说,随着卷积核的增多(即网络的加深),感受野会越来越大。

相关推荐
顾道长生'3 小时前
(Arxiv-2025)通过动态 token 剔除实现无需训练的高效视频生成
计算机视觉·音视频·视频生成
shangyingying_17 小时前
关于小波降噪、小波增强、小波去雾的原理区分
人工智能·深度学习·计算机视觉
码荼8 小时前
学习开发之hashmap
java·python·学习·哈希算法·个人开发·小白学开发·不花钱不花时间crud
书玮嘎8 小时前
【WIP】【VLA&VLM——InternVL系列】
人工智能·深度学习
要努力啊啊啊9 小时前
YOLOv2 正负样本分配机制详解
人工智能·深度学习·yolo·计算机视觉·目标跟踪
武昌库里写JAVA9 小时前
Oracle如何使用序列 Oracle序列使用教程
java·开发语言·spring boot·学习·课程设计
Blossom.11810 小时前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
祁思妙想10 小时前
八股学习(三)---MySQL
数据库·学习·mysql
amazinging11 小时前
北京-4年功能测试2年空窗-报培训班学测开-第四十一天
python·学习·appium
Jyywww12111 小时前
微信小程序学习笔记
笔记·学习·微信小程序