Pytorch——训练时,冻结网络部分参数的方法

一、原理:

要固定训练网络的哪几层,只需要找到这几层参数(parameter),然后将其 .requires_grad 属性设置为 False 。然后修改优化器,只将不被冻结的层传入。

二、效果

  1. 节省显存:不将不更新的参数传入optimizer
  2. 提升速度:将不更新的参数的requires_grad设置为False,节省了计算这部分参数梯度的时间

三、代码:

.requires_grad 属性设置为 False

python 复制代码
# 根据参数层的 name 来进行冻结
unfreeze_layers = ["text_id"] # 用列表
# 设置冻结参数:
for name, param in model.named_parameters():
    # print(name, param.shape)
    # 错误判定:
    # if name.split(".")[0] in unfreeze_layers: # 不要用in来判定,因为"id"也在"text_id"的in中。
    # 正确判定:
    for unfreeze_layer in unfreeze_layers:
        if name.split(".")[0] != unfreeze_layer:
            param.requires_grad = False
            print(name, param.requires_grad)
        else:
            print(name, param.requires_grad)
python 复制代码
# 冻结整个网络
for param in self.model.parameters():
    param.requires_grad = False
python 复制代码
# 查看冻结参数与否:
for name, param in self.clip_model.named_parameters():
    print(name, param.requires_grad)

修改优化器

python 复制代码
# 只将未被冻结的层,传入优化器
optimizer = optim.SGD(filter(lambda p : p.requires_grad, model.parameters()), lr=1e-2)

四、其他知识

  1. 模型权重冻结:一些情况下,我们可能只需要对模型进行推断,而不需要调整模型的权重。通过调用model.eval(),可以防止在推断过程中更新模型的权重。
  2. with torch.no_grad(): # 禁用梯度计算以加快计算速度。
  3. 训练完train_datasets之后,model要来测试样本了。在model(test_datasets)之前,需要加上model.eval(). 否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有batch normalization层所带来的的性质。
    eval()时,pytorch会自动把BN和DropOut固定住,不会取平均,而是用训练好的值。不然的话,一旦test的batch_size过小,很容易就会被BN层导致生成图片颜色失真极大。eval()在非训练的时候是需要加的,没有这句代码,一些网络层的值会发生变动,不会固定,你神经网络每一次生成的结果也是不固定的,生成质量可能好也可能不好。
  4. 何时用model.eval() :训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。在eval/test过程中,需要显示地让model调用eval(),此时模型会把BN和Dropout固定住,不会取平均,而是用训练好的值。
  5. 何时用with torch.no_grad():无论是train() 还是eval() 模式,各层的gradient计算和存储都在进行且完全一致,只是在eval模式下不会进行反向传播。而with torch.no_grad()则主要是用于停止autograd模块的工作,以起到加速和节省显存的作用。它的作用是将该with语句包裹起来的部分停止梯度的更新,从而节省了GPU算力和显存,但是并不会影响dropout和BN层的行为。若想节约算力,可在test阶段带上torch.no_grad()。
  6. with torch.no_grad() 主要是用于停止autograd模块的工作,以起到加速和节省显存的作用。它的作用是将该with语句包裹起来的部分停止梯度的更新,从而节省了GPU算力和显存,但是并不会影响dropout和BN层的行为。如果不在意显存大小和计算时间的话,仅仅使用model.eval()已足够得到正确的validation/test的结果;而with torch.no_grad()则是更进一步加速和节省gpu空间(因为不用计算和存储梯度),从而可以更快计算,也可以跑更大的batch来测试。

参考文章

  1. 知乎讨论
  2. 第十三章 深度解读预训练与微调迁移,模型冻结与解冻(工具)
  3. 【PyTorch】搞定网络训练中的model.train()和model.eval()模式
相关推荐
牛客企业服务10 分钟前
2025年AI面试推荐榜单,数字化招聘转型优选
人工智能·python·算法·面试·职场和发展·金融·求职招聘
视觉语言导航41 分钟前
RAL-2025 | 清华大学数字孪生驱动的机器人视觉导航!VR-Robo:面向视觉机器人导航与运动的现实-模拟-现实框架
人工智能·深度学习·机器人·具身智能
**梯度已爆炸**1 小时前
自然语言处理入门
人工智能·自然语言处理
ctrlworks1 小时前
楼宇自控核心功能:实时监控设备运行,快速诊断故障,赋能设备寿命延长
人工智能·ba系统厂商·楼宇自控系统厂家·ibms系统厂家·建筑管理系统厂家·能耗监测系统厂家
BFT白芙堂2 小时前
睿尔曼系列机器人——以创新驱动未来,重塑智能协作新生态(上)
人工智能·机器学习·机器人·协作机器人·复合机器人·睿尔曼机器人
aneasystone本尊2 小时前
使用 MCP 让 Claude Code 集成外部工具
人工智能
静心问道2 小时前
SEW:无监督预训练在语音识别中的性能-效率权衡
人工智能·语音识别
羊小猪~~2 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
xwz小王子2 小时前
从LLM到WM:大语言模型如何进化成具身世界模型?
人工智能·语言模型·自然语言处理
我爱一条柴ya2 小时前
【AI大模型】深入理解 Transformer 架构:自然语言处理的革命引擎
人工智能·ai·ai作画·ai编程·ai写作